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Abstract

The scramjet isolator is a duct in which pressure increases from the inlet to

the combustor via a shock train. The shock train leading edge (LE) location must

be controlled in an operational scramjet. A LE location measurement algorithm, dy-

namic model, and control algorithm were developed and validated with 500 frame

per second (FPS) shadowgraph images in this research. The test apparatus con-

sisted of a direct connect cold-flow high-speed wind tunnel with an adjustable ramp

mounted in the tunnel floor. Ramp adjustments changed the tunnel cross-sectional

area which changed the tunnel back pressure and LE location. Wall-mounted pressure

transducers and a high-speed camera were used for data collection. The LE location

measurement algorithm is the first with results validated using 500 FPS shadowgraph

images to measure the LE location with root mean square (RMS) errors less than

20% of a duct height, D, although the transducers were separated by 50% of D. The

developed and validated dynamic model is the first with error RMS values less than

24% of D. Finally, the first control algorithm capable of controlling the LE location

within 50% of D was developed and validated.
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Scramjet Isolator Modeling and Control

I. Introduction

The scramjet is a promising technology that has been researched for over 40

years and is capable of providing hypersonic air-breathing propulsion for air vehicles.

The overall system is deceptively simple in that, much like a ramjet, it has no moving

parts. The reality, though, is that the components are quite complex in their design

and operation. This chapter will begin with a discussion of the scramjet components

with a particular focus on the isolator, the primary component of interest for this

research. Next, the hypothesis and the research motivation will be discussed. The

chapter will conclude with an outline of the research that was accomplished to validate

the hypothesis.

1.1 Major Scramjet Components

A dual-mode scramjet is an engine that can operate in both a scramjet and a

ramjet mode and was the engine of interest for this research. The dual-mode scramjet

is composed of four major components: the inlet, the isolator, the combustor, and the

exhaust nozzle which can be seen in Figure 1.1. In the inlet, the flow is initially slowed

across a series of shocks prior to entering the isolator. The isolator allows the flow

pressure to increase to that of the combustor. This pressure increase is accomplished

across a series of shocks, named a shock train, within the isolator. Engine unstart

occurs when the shock train is disgorged from the isolator and the inlet. This can

happen either when the pressure in the combustor, labeled the back pressure, is

too large in relation to the inlet pressure or from combustor and/or inlet pressure

perturbations. Finally, to conclude the scramjet flowpath, energy is added to the flow

in the combustor, developing the back pressure, and the flow is expanded through the

exhaust nozzle.
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Figure 1.1: Scramjet major components [1]

1.2 The Scramjet Isolator

Traditionally, studies into scramjet inlets, to include the isolator, have started

with the study of the diffuser within a ramjet inlet. Common to these studies is

the assumption that there is a standing normal shock just inside the diffuser [7–10].

However, a single normal shock rarely exists within a ramjet or scramjet compression

system [2]. Rather, a multiple shock formation, called a “pseudoshock” or a “shock

train” often forms which is contained within an isolator. The isolator serves two

purposes, the first is to isolate the inlet from disturbances in the combustor and the

second is to provide the shock train with enough duct length to develop and allow as

much pressure increase as possible, given the isolator length, between the inlet and

the combustor. The maximum amount of pressure increase in the isolator is equal to

that across a normal shock, but this increase is, instead, spread across the length of

a shock train, the composition of which is either a series of lambda shocks or oblique

shocks [2].

The flow within an isolator is similar to that within a supersonic tunnel, but with

a significant amount of back pressure, PBP , from the combustion process in the burner.

This Fanno flow can be modeled with the assumptions of one-dimensional, adiabatic

flow with no external work along with the existence of skin friction. Boundary layers

form on the duct surfaces and grow along the length of the flowpath, causing the
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effective cross-sectional area available for full velocity flow to decrease. This decrease

in the area acts as a nozzle that will increase the flow Mach, M, number toward one

for a subsonic flow and decrease the flow Mach number toward one for a supersonic

flow [11]. When PBP is increased, a shock forms in the flow. For lower Mach numbers

(M / 1.5) a single normal shock generally forms. For mid-range Mach numbers

(1.5 / M / 1.7) the flow will appear as a series of normal shocks, called lambda

shocks, as described in the following paragraph. Finally, for higher Mach numbers

(M ' 1.7), the flow will appear as a series of oblique shocks [12,13]. Diagrams of the

normal and the oblique shock trains are presented in Figure 1.2. In this figure, as

well as in all figures showing the flow, the flow is from left to right.

Figure 1.2: Normal and oblique shock trains [2]

The reason for these interesting flows is the interaction between the boundary

layer and the shock (or series of shocks) itself. As the strength of the shock increases,

the shock will form what is called a lambda shock. This shock, shown in Figure 1.3, ac-

tually bifurcates near the boundary layer. Additionally, the shock will cause boundary

layer separation and flow reversal (within the boundary layer) [14]. This separation

will increase the boundary layer size within the flow, increasing the Mach number of

the subsonic flow behind the shock to potentially develop a supersonic zone behind
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the shock. This supersonic region was termed a “supersonic tongue” [14] and has

been detected both by simulation and by experimentation for a number of different

Mach and Reynolds (Re) numbers [15, 16]. This supersonic region then decreases to

subsonic speeds with another shock due to the increased size of the boundary layer

and the process repeats itself until there is not enough energy in the flow to develop

a supersonic zone downstream of a shock and the flow remains completely subsonic,

which marks the end of the shock train. With increases in Mach or Reynolds number

values, the size of the embedded supersonic region decreases [3]. Further, as the value

of Mach is increased, separation becomes more pronounced and a series of oblique

shocks form a shock train as the flow goes from supersonic to subsonic [2].

Figure 1.3: Supersonic tongue after a bifurcated normal shock [3]

1.3 Hypothesis

The hypothesis of this research was that the location of a shock train developed

within a cold-flow blow-down wind tunnel could be sensed, modeled, and controlled

using pressure transducers and an adjustable ramp mounted in the downstream por-

tion of the wind tunnel. Control in this case implies that the controller can place and

hold the steady-state shock train leading edge location to within ± one duct away

from the desired shock train leading edge location.

The various chapters in this dissertation demonstrate that the hypothesis was

validated; the shock train location can be controlled within a cold-flow blow-down

wind tunnel to within ± one duct height. This was accomplished first by developing

a method to locate the shock train leading edge location using the pressure increase
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in the test section. Next, a dynamic model was developed and validated to model the

location of the shock train leading edge with inputs from either the back pressure or

a ramp assembly mounted in the test section. Finally, the measurement algorithm

and dynamic model were used to develop a control algorithm using the ramp assem-

bly. The hypothesis was validated by demonstrating positive control of the shock

train leading edge location using the developed measurement and feedback control

algorithms.

1.4 Motivation

The motivation for this effort is to lay the groundwork for the implementation

of a closed-loop feedback control algorithm for a scramjet engine. As discussed earlier

in the chapter, inlet unstart occurs in a scramjet when the shock train becomes

disgorged from the inlet [2]. This can happen for a number of reasons, one of which

is a change in the angle of attack of the air vehicle which effects the flow into the

isolator [17, 18]. Another potential unstart cause comes from fueling the scramjet

combustor. Fuel increases can be used for air vehicle acceleration, but these increases

produce a large back pressure that can fall out of balance with the pressure of the

flow entering the isolator. An example of when the fuel was changed and unstart

occurred is what happened on the second X-51A flight. After the initial boost, when

the engine was changing from ethylene to JP-7, the program manager believes more

thrust was produced than was anticipated and the inlet unstarted [19]. The engine

could not be restarted and the air vehicle flew into the ocean [20]. This is an example

of what happens when the back pressure to inlet flow pressure ratio is too large. When

this happens the shock train will become disgorged from the isolator. If the shock

train LE could be actively controlled, the LE could be placed at a predetermined

location in anticipation of positive or negative changes in angle of attack or velocity.

Additionally, active control of the LE could negate the need for a long isolator, thus

decreasing the overall size and weight of the scramjet, potentially increasing range

and/or payload.
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1.5 Test Apparatus

All runs accomplished in this research were completed on a cold-flow high-

speed wind-tunnel located at the Air Force Institute of Technology (AFIT). A test

section consisting of a 24 in. duct with an adjustable ramp was mounted along the

flowpath of the wind tunnel. The test section has a 2.5 in. × 2.5 in. square cross-

section. Taps used to mount high-frequency pressure transducers were drilled into

the ceiling and floor of the test section to measure wall static pressures throughout

a run. Additionally, data was collected using high-speed shadowgraph photography

to verify the final shock train LE measurements. The entire assembly was controlled

using a computer utilizing LabVIEWTM software.

1.6 Accomplished Research

The research accomplished to address the hypothesis was completed in three

parts: validate a shock train LE measurement algorithm, develop a dynamic model

for the shock train LE location, and develop a feedback controller. Each of the three

parts is considered in a separate chapter within this document. The overall control

algorithm implemented as a part of this research is presented in Figure 1.4 where

xDes is the desired shock train LE location, xMeas is the measured shock train LE

location using the developed measurement algorithm, e is the difference between xDes

and xMeas, uI is the output from the integral controller, φI is the integral control

commanded angle, φDB is the ramp angle commanded by the deadbeat controller,

φCtl is the commanded ramp angle, φMeas is the measured ramp angle, Ps is a vector

of static pressures, x̂s is a vector of the estimated location states, Φ̂r is a vector of the

estimated ramp states, uDB is the deadbeat controller output, KDB is the deadbeat

controller gains, z−· is the backwards shift operator, t is time, k is a sample number,

and ∆t is the time between samples.

1.6.1 Validate a Shock Train Location Measurement Algorithm. The first

task accomplished was to develop and validate an algorithm to locate the shock train
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Figure 1.4: Schematic of the overall controller

LE within the AFIT wind-tunnel test section. In Figure 1.4, this task is captured

in the block labeled “Measurement Algorithm.” The importance of this block was to

develop a way to measure xs, the actual shock train location, for use in a closed-

loop feedback control algorithm. The approach taken was to use the vector of static

pressures collected at sample k, Ps(k), in an algorithm to calculate the shock train

location and return the “measured” shock train location at sample k, xMeas(k). Six

different approaches were considered to use as the measurement algorithm. Previous

methods [21–23] used to locate the LE location using wall-mounted pressure trans-

ducers had accuracies no better than the distance between two pressure transducers.

Contemporary methods [24–26] used to locate the LE did not include a correlation

to shadowgraph measurements at a rate greater than 30 frames per sec. The con-

tribution of this portion of the research is that, not only is the calculated xMeas

correlated with the measured shock train location using the high-speed (500 frames

per sec) shadowgraph photography, labeled xOptic, but the accuracy is significantly

better than the distance between pressure transducers. The error metric used was

the root mean square, RMS, of the vector of measurement errors where the vector is

composed of the error for each k throughout a run, labeled e, and the measurement

error was defined as the difference between xMeas and xOptic. The RMS of e was given

the symbol eRMS.
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Figure 1.5: Schematic of dynamic modeling

1.6.2 Develop a Dynamic Model of xs Within a Duct. The next step in the

research was to develop two shock train LE location dynamic models for a shock train

within a duct. Two different types of models were developed as a part of the research:

1. a dynamic model relating PBP to xs

2. a dynamic model relating the measured ramp angle, φMeas, to xs.

The intention of the first model type was to demonstrate that the relationship between

the shock train LE location and the back pressure could be modeled in a fashion

that was useful to develop an automatic control algorithm to control xs. A general

schematic inclusive of the PBP to xs models developed in Chapter V is presented in

Figure 1.5 where uNL is the dynamic model input and xModel is the dynamic model

output. All of the models developed included a static model and a dynamic model

and relied on the measurement algorithm developed earlier in the research. In the

second model type, the same static nonlinear/dynamic model structure was used to

develop a model that was then implemented in a control algorithm. The dynamic

model developed for the second portion of the modeling effort represents the blocks

labeled “Test Section” and “Nonlinearity Inversion” in Figure 1.4.

The dynamic modeling approach taken as a part of this research was to adopt

a system identification “black box” approach. Using this approach, several input

signals are provided to the system and the output is recorded. The input signals

were changes in PBP for the first model and φMeas for the second model. The output

signal for both dynamic model types was labeled xModel when implemented in the
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LabVIEWTM algorithm. Several model structures were then assumed and evaluated

by comparing the experimentally collected data to simulation data. The simulation

was accomplished using the same experimental inputs collected in a test run and

compared the output from the model simulation to the output measured in the test

section. The model structure chosen was a Hammerstein model structure. The Ham-

merstein model is composed of a static nonlinear model followed by a dynamic model.

A static nonlinear model is a model that accepts an input and returns an output in

the same sample set, k, whereas a dynamic model is one that accepts inputs from

several sample sets (e.g. k, k−1, k−2) and returns an expected output at a different

time (e.g., k + 1). The Hammerstein model and the system identification approach

are discussed more thoroughly in Appendix C.

1.6.3 Develop and Validate an Automatic Feedback Controller for xs. The

final portion of this research was to develop and validate an automatic controller for

the shock train LE location, xs. The controller that was developed utilized the shock

train measurement algorithm and the φMeas to xs model that were both developed

and validated as a part of this research. The different parts of the controller are

presented in Figure 1.4 and are labeled “Integral Controller,” “Full-State Observer,”

and KDB. The control algorithm used was a dead beat controller along with integral

control and a full-state observer. The controller was implemented on a computer with

LabVIEWTM and the values for the desired shock train location, xDes, were compared

to xOptic to calculate eRMS. The controller was developed to operate throughout the

Reynolds number range achievable in the test section.

1.7 Contributions of This Research

As a part of this research, first a measurement algorithm was developed to locate

the shock train LE within a duct using pressure transducer measurements. The first

contribution was to provide an algorithm, validated using high-speed shadowgraph

imagery, capable of providing a continuous (in terms of x) shock train location mea-
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surement applicable throughout the available test section Reynolds number range.

The next contribution was to develop a dynamic model relating PBP to xs. Previ-

ous scramjet models have either not included the shock train dynamics [27–31], have

been based on perturbation models which have suffered from a limited input space

of available pressure changes [7–10,32], or regarded the dynamics as noise [18,33,34].

The model structure and/or modeling approach developed in this research could, po-

tentially, be exported to another isolator for use in a control algorithm. The model

was validated to predict the shock train location to within the distance between pres-

sure transducers (less than 47.6% of D) and the dynamic model input space included

pressures that could place the shock train throughout the test section. Finally, a con-

troller was developed and validated to actually control the location of the shock train

LE. To date, few controllers have been implemented with the objective of controlling

the shock train location throughout the isolator in mind. The closest may be the

propulsion system controller controller (PSC) from the X-43A, which used the fuel

flow and inlet cowl as actuators in a proportional-integral feed-forward controller [35]

used to prevent unstart. Specifically, in regards to fuel flow, the controller decreased

the amount of fuel provided to the combustor if potential unstart conditions were

noted. The controller did not command the shock train location throughout a run.

The controller developed and validated as a part of this research provides the capabil-

ity to place the shock train LE at a desired location within the isolator which, among

other things, enables an enhanced margin of safety for air vehicle turns and changes

of angle of attack.

Having motivated and previewed the results, the dissertation is arranged as

follows. Chapter II covers the current literature on the topics of LE detection, scramjet

isolator modeling, and scramjet control in more detail. Chapter III covers the test

apparatus and procedures that were used as a part of this research. Chapter IV covers

the research accomplished for location measurement. Chapter V covers the modeling

research and the control research is presented in Chapter VI. Finally, the conclusions

are presented in Chapter VII.
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II. Literature Review

The focus of this research is shock train LE location measurement, modeling, and

control within the isolator of a scramjet. This chapter will summarize the research

to date on LE detection, shock train LE location modeling, and shock train LE

location control. To build a foundation for this discussion, this chapter will begin

with a discussion of the shock train dynamics and pressure distribution. It will then

highlight the areas of contribution of this research, including LE detection, scramjet

modeling, and scramjet propulsion controls.

2.1 System Dynamics

Study into the dynamics of a shock train in a scramjet began with normal

shocks in a duct and/or a supersonic inlet. Beginning in the 1950s [32] the reaction

of a normal shock in a duct with varying cross-sectional area to downstream pressure

changes was studied. Results of the initial study show that, for small downstream

disturbances in the pressure ∆p2, there is a first-order lag relationship to changes in

the location of a normal shock, ∆xd. This system is described by the transfer function

in Equation (2.1) [32]
∆xd(s)

∆p2(s)
= kH

1

a+ σHs
(2.1)

where:

σH =
1

at0

A1(
∆A1

∆xd

)
ss

σ′H (2.2)

kH = −γ + 1

4γ

1

p1

1

M1

a1

at0

A1(
∆A1

∆xd

)
ss

σ′H (2.3)

σ′H =

2(γ+1)
γ−1

M1

(
1 + γ−1

2
M2

1

) 1
2

1 + γ2+1
γ−1

M2
1

(2.4)

where the subscript “H” is from the author who developed the model, H. G. Hurrell,

s is the complex operator associated with the Laplace transform, a is the speed of

sound, at0 is the speed of sound in the stagnation chamber, A1 is the duct cross-
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sectional area entering the shock, ∆A1 is the change in the duct cross-sectional area

due to the duct design,
(

∆A1

∆xd

)
ss

is the change in cross-sectional area per a change in

shock location at steady-state, γ is the ratio of specific heats, p1 is the static pressure

entering the shock, and M1 is the Mach number of the flow entering the shock.

Subsequent researchers [9] took a different approach, although also based on a

perturbation theory approach, the work considered an admittance function describing

the strength of a reflected acoustic wave from a normal shock in a diffuser. They too

arrived at the conclusion that isolator dynamics can be modeled with a first-order

lag transfer function. Using the acoustic wave approach, it was shown [9] that a thin

normal shock in a diffuser is stable (under most conditions) when in a diverging duct

and unstable when in a converging duct.

2.2 Pressure Rise

In the 1950s one of the first to attempts to develop a dynamic pressure model

for the pressure rise within a shock train was made [36]. The historic model, called

the “shockless model”, was based on one-dimensional analysis of the flow and the

consideration that the entropy increase from multiple oblique shocks is less than that

from a single normal shock. As a result, the assumption was made that dissipative

phenomenon within the shock train occurred primarily in the turbulent dissipative

regions of the boundary layer and downstream of the shock train as opposed to within

the shocks [36]. Later, the “shockless model” was modified [13] to better accommodate

the flow boundary conditions at the end of the shock train as well as to allow for the

calculation of the pressure on walls surrounding the shock train. This model, called

the “diffusion model” proved adequate to calculate the length of the shock train, and

could be used to calculate the static pressure for a high Mach number flow (M=2.79

was tested), but was inadequate for static pressure distribution calculations at lower

Mach numbers. Additionally, while dynamic capabilities of the model were considered,

only time-averaged results were provided.
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Other researchers in the 1970s [37] were also studying the pressure distribution

in scramjet engines. Specifically, they developed a heuristic relationship describing the

pressure profile within an isolator based on time-averaged isolator wall static pressure

distributions. This relationship is presented in Equation (2.5)

St (M2
0 − 1)Re

1/4
θ

D
1/2
r θ1/2

= 50

(
Ps,e
Ps,0
− 1

)
+ 170

(
Ps,e
Ps,0
− 1

)2

(2.5)

where St is the shock train length, M0 is the Mach number at the entrance to the iso-

lator, Reθ is the Reynolds number based on the boundary-layer momentum thickness,

Dr is the diameter of the round duct, θ is the boundary-layer momentum thickness,

Ps,e is the pressure at the end of the shock train, and Ps,0 is the static pressure at

the inlet to the isolator. Unfortunately, the correlation presented in Equation (2.5)

requires knowledge of the boundary-layer momentum thickness, which either requires

significant assumptions, computer simulations, or pitot tubes inserted within the flow.

The boundary layer thickness was later measured [38] using a pitot rake to determine

the steady-state boundary-layer thickness at two Mach numbers within an isolator.

Recently, the Air Force Research Laboratory (AFRL) [6] has attempted to im-

prove upon the correlation presented in Equation (2.5) to provide a mathematical

model for the wall pressure distribution that does not include the boundary-layer

momentum thickness. The flow was considered at two Mach numbers while using

different isolators with different surface finishes and led to the correlation presented

in Equation (2.6)

PL(ξ, t) = M0(t)2 [(Ps(ξ, t)− P ′s(t)) /P0(t)]

PBP (t)/P1(t)
(2.6)

where PL(x, t) is the pressure per the AFRL-developed correlation at every point in

time, t, location along the isolator wall, ξL, P0 is the total pressure, Ps is the static

pressure, P ′s is the static pressure at the shock train LE, P1 is the static pressure at

the most upstream transducer, and PBP is the back pressure.
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There are no first-principles-based models for the static pressure distribution

within the isolator. Since these models are based off heuristics and/or assumptions,

they all have significant error bands on their results. In addition, these models do not

model the transient pressure behavior due to changes in back pressure. These models

validate that a significant pressure rise is incident with the shock train LE location;

a consideration that was used in the shock train location measurement algorithm of

this research.

2.3 Leading Edge Detection

In order to control the shock train LE location within a scramjet isolator, one

must be able to realize or measure the LE location. This concept was noted in the

X-43A engine control research which provided a feedback controller based on increases

in unstart probability [35]. The majority of the research into locating the shock train

LE is based on the static pressure increase within the boundary layer due to the

shocks impinging upon the isolator walls from the shock train [2]. This pressure is

then measured with wall-mounted pressure transducers and the LE is located through

some algorithm with varying accuracy. Recent research has expanded this raw pres-

sure rise technique to include considerations of pressure standard deviations, pressure

measurement spectral content [24,25] and pressure summation correlations [39].

Starting in the mid-1950s, the National Advisory Committee of Aeronautics

(NACA) began studies on the control of the shock train within a ramjet diffuser

[40]. Successive early studies, which also assumed a single normal shock, studied

techniques for sensing the location of the shock [21–23, 26]. The authors in these

studies considered the entire wall pressure profile within the inlet and assumed the

LE location of the shock train was at the large initial pressure increase which is in

agreement with the pressure correlations discussed in Section 2.2. Due to computing

limitations, the accuracy of the shock train position could only be as accurate as the

spacing between pressure transducers in the wall of the inlet [21–23]. Ultimately, a

14



technique based on the sum of wall pressure measurements that originated from this

method of research, was successfully used on the YF - 12 [26].

This ramjet research was expanded [24] to include shocks of increased strength

at higher Mach numbers (M ≈ 3) and their accompanying shock trains. Additionally,

in this research, 30 frames per second shadowgraph imaging recorded the shock train

LE location. Multiple ways to locate the LE were considered, including the instan-

taneous pressure distribution (IPD) method, the turbulence intensity amplification

(TIA) method, and the search-tone detection (STD) method. The first method is

very similar to the previous NACA and NASA studies and measured the wall pres-

sure to determine the shock train location based on the increased static pressure from

a shock. The second technique is based on the amplification of the boundary layer

turbulence after passage of the shock. Due to the motion of the shock train LE and

its interaction with the boundary layer, high-frequency spectral content is created

within the boundary layer which can then be measured with pressure transducers.

The TIA method measures the RMS value of the pressure fluctuations at each sensor

and assumes the LE is at the transducer with an increase in high-frequency content.

Unfortunately, this method is also limited in accuracy to the distance between the

pressure transducers. In the STD method, a tone of a known frequency was added

to the flow. The assumption was that the tone (acoustic wave) would excite the LE

and this excitation would be observable in the pressure readings. Unfortunately, the

STD technique did not work, the TIA method was rejected as being noisy and the

IPD method was recommended [24].

In a patent [41], the task of locating the shock train LE was considered again.

Utilization of an estimation routine was specifically rejected due to the assumption

that an estimation routine would require too much flow characterization using pre-

vious knowledge for implementation. The technique utilized for this patent involved

taking a least-squares curve-fit of the pressure distribution. The resulting equation

was then adjusted using tuning parameters to fit the curve to a predetermined shape.

After fitting, the shock train LE was determined to be the point in the curve where
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the pressure increases significantly [41]. While this technique provides a way to deter-

mine the location of the shock within the distance between the pressure transducers,

it is still based on wall pressure measurements and is essentially an extension of the

wall pressure measurements already discussed.

Contemporary LE detection research [25, 42] built on these previous efforts us-

ing a direct-connect wind-tunnel connected to a combustor. First [42] several historic

techniques were validated while the need for an isolator was also validated. Next [25]

research into different ways to locate the shock train LE with the isolator for potential

use in a feedback controller was accomplished. Three LE detection techniques were

considered. The first technique was to consider the location where the normalized

(static pressure normalized by total pressure) wall pressure increased 150%. This

technique permitted interpolation between pressure transducers and is very fast to

compute. The second technique included finding the location where the standard

deviation of the pressure increased by 150%. The pressure standard deviation tech-

nique proved not to be as effective at determining the LE location as the pressure

rise technique [25]. The final LE detection technique implemented was to locate the

high frequency content of the flow [24,42]. In the research it was determined that the

frequency content of the pressure measurement power spectral density (PSD) from a

pressure transducer downstream of the shock train was primarily less than 0.2 kHz.

When the shock train was upstream relative to the same transducer, more power was

concentrated in the higher frequencies of the PSD (measured up to 4 kHz). As a result

of these frequency findings, a technique in which the shock train LE was located by

using an increase in the PSD was proposed [25]. While this technique was considered,

the authors argued that calculating the PSD at each transducer and then finding the

LE is too cumbersome as opposed to the previous simple pressure rise techniques [25].

The shock train LE detection methods were not validated using optical measurements

in these contemporary studies [25,42].

Several researchers have considered how to detect the location of a shock train

LE. Historical studies were hampered by accuracy issues, primarily due to a lack of
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computing power, while contemporary studies were hampered by a lack of validation

by high-speed optical measurements (i.e., shadowgraph measurements greater than

30 frames per second). This research bridges the gap by considering a shock train LE

detection technique that is accurate to distances between transducers and is validated

using optical measurements taken at 500 frames per second.

2.4 Current Modeling

After validating a method to locate the shock train LE, the next step was to

develop a dynamic model of the system. Some models exist for the scramjet, but

generally either neglect the shock train or are limited in input space to not including

the entire isolator. In this section, the current state of research into scramjet isolator

modeling is discussed.

2.4.1 Linearized Models. Several researchers [7–10] attempted to derive the

dynamics of a normal shock using first principles. In these theories, pressure pertur-

bations were assumed to act like acoustic waves in the flow and a model for the system

dynamics was developed by applying a perturbation theory approach to the normal

shock relations. One of the best known models [7] assumed acoustic disturbances

from both the inlet and the combustor would travel through the boundary layer to

perturb a normal shock. Unfortunately, this analysis was based on a thin normal

shock as opposed to a shock train. Additionally, since perturbation theory, which is a

linearization technique based on small perturbations from a selected point, was used,

the model produced is only valid for small perturbations from any point rather than

the entire isolator length. Later [43], a piecewise linear method was used to enlarge

the input space for the control of a normal shock by creating a series of linear models

around an equilibrium manifold. The analysis accomplished [43] was also built on the

assumption of a normal shock, so would, potentially, have limited applicability to a

shock train.
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2.4.2 Engine Models Developed to Support Hypersonic Vehicle Models. The

next major focus of study that resulted in scramjet models dealt with the study of

the simulation and control of the total hypersonic vehicle, primarily for pitch con-

trol [4, 30, 44]. In these studies, the scramjet was typically treated as an actuator.

Only later modeling efforts [29,31] included significant details of the scramjet interior

operation. Additionally, these studies were used to optimize flight profiles for single-

stage to orbit missions using various techniques [45]. These studies were typically

based on a X-30-type airframe with an integrated airframe/propulsion flowpath as

displayed in Figure 2.1. In this configuration, the forebody compresses the flow and

Figure 2.1: Integrated hypersonic engine flowpath [4]

the flow is expanded along the aft-body, creating significant forces on the fore and

aft of the air vehicle. As a result, there is a strong coupling between the propulsion,

aerodynamic pitch control, and the vehicle’s elastic body [44,46]. An extension of this

initial research was on the optimal configuration for a hypersonic launch vehicle. This

research revealed that the maximum achievable mass fraction for these air vehicles is

a strong function of the propulsion system efficiency [47].

In an effort to improve hypersonic air vehicle modeling efforts, AFRL sponsored

research that included the shock train [29,31]. This research did provide for a higher

fidelity model of the propulsion flow by first considering fuel burn time based on

individual fuel species and, second, considering the strength of the pre-combustion

shock train using impulse functions. In regards to the isolator portion of the model,

although a more refined model than previous attempts, it still did not relate the LE

location to the PBP from the combustor. Rather, the model, which included fuel

18



ratio and fuel burn rate, modeled the static pressure increase across the whole shock

train, not the location of the shock train LE. As a result, the model would not be

able to predict the location of the shock train, only that there would be a shock train

somewhere within the isolator. Additionally, the authors commented that the model

is too complex to be used for real-time, model-based control due to the computation

time needed to calculate solutions with the model. While those modeling hypersonic

air vehicles are refining their propulsion model, they have not created a model relating

the back pressure to the LE location.

The current models have several inadequacies for application to an automatic

control algorithm for controlling the shock train LE location throughout the length of

the isolator. First, the linearized normal shock equation models are based on a normal

shock assumption. Applying perturbation theory to the normal shock equations limits

the applicability of these models in regards to the isolator length range for which they

are valid. Models designed for hypersonic vehicles are inadequate for an automatic

controller since they either completely neglect the shock train or do not predict the

location of the shock train LE. The contribution of this research was the development

of a model, applicable throughout the isolator, that is specific to the shock train LE

location.

2.5 Controls

The final portion of this research included designing a feedback controller capa-

ble of controlling the LE to a desired location without unstarting the isolator. The

control of a scramjet has been shown to be a challenging hurdle to overcome [35]. Ad-

ditionally, there are few open-source papers that discuss scramjet control algorithms

as implemented on current vehicles. As a result, the state of the art for the control of

scramjets is still in its formative stages and there is still a great deal of discussion as to

the best “actuator” to be used to control the scramjet flow. The primary goal of most

scramjet controllers is to prevent unstart while allowing the largest pressure increase

possible in the isolator. The maximum pressure increase expected in an isolator is that
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caused by a normal shock [48]. The previously proposed published control algorithms

are based on proportional, proportional-integral, or quadratic control [7, 35, 49–53].

Additionally, there have been some more contemporary authors that have considered

nonlinear controllers in the form of a “smoothed” controller or gain scheduling [18,54].

2.5.1 Proportional Controllers. One of the first applicable controllers [7]

was designed to prevent unstart of a normal shock within a diffuser and was based

on a model developed using the perturbation approach described in Subsection 2.4.1.

While the assumption when creating this model was that there was a single normal

shock in the inlet, the analysis is still useful for scramjet research. The analysis was

based on an acoustic wave approach for shock motion as well as acoustic reflection and

transmission where flow disturbances were modeled as either acoustic or entropy waves

propagating through the flow. As a result of this propagation time and the delays

resulting from that propagation time, it was noted that the control bandwidth would

be limited. Although the assumption that there is a single shock is not applicable

to a typical isolator, there will likely be a time delay in an isolator as well due to

the time needed for pressure waves to travel through the boundary layer to the shock

train leading edge. To control the shock train location, a proportional controller

was used based on the perturbation-theory based model. The proportional gain was

calculated based on the effects of acoustic waves traveling through the system in order

to compensate for the aforementioned time delays. Using the proportional controller

on bleed air to decrease the boundary layer size, the normal shock was able to track

to the desired location through flow disturbances in simulation [7]. Additionally,

proportional control and simple on/off control have been considered [7,49], for use in

bleed air controllers to regulate the amount of mass removal from the flow [50,55] to

minimize the impact on thrust.

An example of a fielded system utilizing a proportional fuel-flow controller is the

X-43A. The X-43A propulsion system controller (PSC) was used to prevent unstart

by changing the fuel flow using a proportional-integral with feedforward controller.
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Additionally, the X-43A PSC commanded the inlet cowl to either full-open or closed.

The X-43A PSC decreased the amount of fuel when an unstart became probable

in the course of a flight [35]. Finally, NASA and Russia tested a scramjet in 1998

that opened and closed fuel valves to prevent unstart based on the shock train LE

reaching a certain location [51]. Neither of these controllers offer the capability to

actively direct the shock train LE to a desired location.

2.5.2 Optimal Controllers. As discussed in the modeling section, researchers

attempting to model and control a hypersonic air vehicle considered scramjet mod-

els of varying detail. These models typically consider the scramjet as an actuator

in the control scheme and the actual control algorithm for the engine itself is ne-

glected. While these controllers are, generally, highly optimized based on the pre-

planned flight profiles, several will also have another controller (e.g., linear quadratic

controller [52], proportional-integral (PI) and proportional-derivative (PD) [53]) to

handle perturbations from the optimized route. The controllers use the cowl and dif-

fuser cross-sectional areas as well as the fuel equivalence ratio as actuators to maintain

air-vehicle attitude. While these techniques have shown promise in controlling the air

vehicle, these control techniques have neglected the shock train LE location within

the engine itself.

2.5.3 “Smooth” Controller. In a recent paper [54], three controllers were

considered to control the location of the shock train LE to prevent unstart: a propor-

tional controller, a PI controller, and a “smooth” controller. The smooth controller

adds a ‘smoothing’ term, in the form of a hyperbolic tangent scaled off the maxi-

mum measured disturbance, to the proportional controller. The results were that the

proportional controller was not able to track to the desired shock location after a

disturbance whereas the PI controller was able to accomplish this task. The actuator

used in this research was the change in the inlet cross-sectional area. When restric-

tions on control authority were placed on the controller, the PI controller was unable

to accurately track the desired shock location, whereas the “smooth” controller was
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able to track the desired shock train location and handle control bandwidth limita-

tions [54].

2.5.4 Gain Scheduling. Others have developed a control algorithm using

gain scheduling [18]. In this approach, the shock train dynamics are modeled as noise

and the gains in a PI controller are based on the location of the shock train LE within

the isolator. Through simulations, the authors validated a gain scheduling approach

to controlling the location of the shock train within the isolator. No experimental

results were presented in the research.

2.6 Literature Review Conclusion

The purpose of the literature review was to describe the state of the art in

scramjet LE detection, modeling, and control. While multiple authors have devel-

oped methods to measure the location of a shock train LE, either the methods were

validated with lower frequency (30 frames per sec) shadowgraph photography or the

shock train LE locations were not validated at all. The measurement portion of this

research builds upon the previous research by validating the detected (by the measure-

ment algorithm) shock train LE location on a frame-by-frame basis using high-speed

(500 frames per sec) shadowgraph photography. Next, current dynamic models range

from those developed using perturbation theory, which limit the input space of the

model to small pressure perturbations, to models that disregard the shock train LE

location altogether. This research initially builds upon the perturbation theory mod-

els by introducing a nonlinearity to increase the input space for the perturbation

models to include large pressure increases. After increasing the input space with a

nonlinearity, the first-order-lag model was reconsidered with different model types to

develop a model that can accurately predict the shock train LE location throughout

the test section. Finally, there are no controllers in the open literature capable of

placing the shock train LE location at desired locations throughout the test section

that have published experimental results. In this research, a control algorithm was
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developed and validated that provides control authority throughout the test section.

In the next chapter, the methodology and test apparatus used in this research will be

described.
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III. Methodology

In this chapter, the test apparatus, test conditions, and laboratory procedures used

to collect data are presented. The test apparatus, located at the AFIT aeronautical

engineering laboratories, included a cold-flow supersonic wind tunnel along with com-

puters for data collection. Section 3.2 includes a discussion on the test conditions and

procedures as well as a discussion of shock waves that form within the test section.

The dynamics of the ramp assembly are discussed in Section 3.3.

3.1 Test Apparatus

The primary test components were a vacuum pump and reservoir, a stagnation

chamber and a high-pressure compressor (up to approximately 180 psi) and reservoir

to provide the airflow for the test section. Additionally, there are several valves, both

manual and automatic, to provide control of the air flow. A drawing of the test setup

is presented in Figure 3.1 and pictures of the test facility components are presented

in Appendix F. The actual test section is 24 in. long and has square cross-sectional

dimensions of 2.5×2.5 in. An illustration of the test section with the transducer

mounting locations noted on the illustration is presented in Figure 3.2. For all runs

conducted, a M=1.8 nozzle was attached to the test section. A drawing of the Mach

1.8 nozzle, drawn to scale, is presented in Figure 3.3.
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Figure 3.2: A drawing of the test section and transducer mounting locations (not to

scale)

The computer system used in this research was a National Instruments (NI) Pe-

ripheral Component Interconnect eXtensions for Instrumentation (PXI) chassis com-

puter system. This system, which used Windows XP as an operating system, allowed
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Figure 3.3: A drawing of the Mach 1.8 nozzle used throughout this research

inputs and outputs for data collection and control signals through several removable

cards. The NI PXI unit used for this research operated a NI Laboratory Virtual

Instrumentation Engineering Workbench (LabVIEWTM ) program that started, ana-

lyzed (when applicable), and stopped each run.

Prior to the commencement of the research detailed in this dissertation, the

AFIT supersonic wind tunnel was modified to incorporate a ramp assembly in the

test section and mounting points for pressure transducers along the test section floor

and ceiling as a part of a Masters thesis [56]. The wind tunnel has two nozzles, one

for Mach 2.94 flow and one for Mach 1.80 flow. A lambda shock train was produced

in the Mach 1.80 flow and an oblique shock train was produced in the Mach 2.94

flow, consistent with anticipated results [2]. Both shock train types were observed

using shadowgraph photography. Having both nozzles allows for research on both

types of shock trains utilizing the same wind tunnel and test section. There is a

very limited ramp angle range between shock train formation and unstart (average of

∆φ = 0.377 deg. where ∆φ is the difference between the φMeas at shock formation and

the φMeas at unstart in this instance) for the Mach 2.94 nozzle [56]. The commanded

accuracy of the ramp assembly is only accurate to ±0.2 deg., though. As a result,

the range for active control using the Mach 2.94 nozzle in this test configuration is
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negligible. For the Mach 1.80 nozzle, the range between shock formation and unstart

is larger (∆φ ≈ 4 deg.) using both the top and bottom ramps. The available ramp

deflection is then increased to approximately ∆φ ≈ 6 deg. when only the bottom

ramp is used in the Mach 1.80 flow. In addition to the increased ramp deflection

range from removing the ceiling-mounted ramp, removal of the ramp also decreases

the rotating mass, thus increasing (marginally) the bandwidth of the ramp assembly.

The ramp bandwidth will be discussed in Section 3.3. As a result of the control

authority, increased ramp bandwidth, and the experimental necessity, only the Mach

1.80 nozzle with a single ramp was considered in this research.

After removal of the ceiling-mounted ramp, the test section ramp assembly con-

sisted of a single ramp mounted in the floor in the downstream portion of the test

section. The location of the ramp is indicated in Figure 3.1 and a picture of both

of the ramps (before the upper ramp was removed) is presented in Figure 3.4. The

ramp was connected to a hydraulic actuator controlled with an MTSr proportional-

integral-differential (PID) controller with inputs from the LabVIEWTM system. The

PID gains were set prior to the collection of any data and were not changed dur-

ing data collection. The MTSr controller accepted external commands from the

LabVIEWTM controller via analog voltages for the desired hydraulic extension and

provided feedback on the hydraulic extension via analog voltages. The digital-to-

analog and analog-to-digital conversions were accomplished by the LabVIEWTM com-

puter.
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Figure 3.4: A picture of the ramps contracted and extended

Pressure transducers were placed along the top and bottom of the test section

to measure the wall static pressure and deduce the shock train LE location using the

detection algorithm validated in Chapter IV. There are nt transducers used in each

run. They are labeled with the symbol ζ and mounted with the most upstream trans-

ducer at station one. Therefore, for example, the most upstream transducer was ζ1,

which was mounted at xζ1 and collected pressure data Ps,1. The pressure transducer

numbers increased as they were mounted further downstream with the most down-

stream transducer measuring PBP . The pressure transducers selected for this research

were Endevco 8530c-50 pressure transducers. These piezoresistive units provided high

frequency capabilities (up to 320 kHz) as well as the ability to measure pressures up

to 100 psia. These 15 transducers were then connected to five Endevco Model 136

three-channel DC amplifiers which provided a voltage to the NI PXI computer and

the LabVIEWTM software which accomplished the analog-to-digital conversion. The

transducers were calibrated prior to the collection of any data at the AFRL Propulsion

Directorate and the calibration data is presented in Appendix G.

Finally, in addition to the LabVIEWTM collected data, data was also collected

using a high-speed camera configured to collect shadowgraph images. The camera
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was a Photron FASTCAM-X 1280PCI camera attached to a PC running Photron

Fastcam Viewer (PFV) version 2.4.3.8 software. The camera recorded 500 frames per

second (FPS) at a full resolution of 1280× 1024 pixels [57]. Additionally, due to the

mirrors used, the camera had a limited field-of-view of approximately 9 in. of the test

section so tests over the entire test section required multiple runs along with camera

moves. The camera was activated with a signal from the LabVIEWTM software to

the PFV software, which activated the camera, added a time stamp to each image,

converted to an audio video interleave (avi) file and saved the video. The avi format

allowed the video to be viewed as a video for frame-by-frame for analysis.

3.2 Operating Conditions and Experimental Procedure

All tests were run in a room that is heated and cooled for the winter and

summer, respectively. Additionally, the room barometric pressure was recorded on

each day of testing using a separate barometer located in the lab. Finally, following

precedent [56], the wind tunnel was always started prior to deployment of the ramp.

This technique ensured a started tunnel prior to any experimental effort, allowing a

common starting point for all experiments.

3.2.1 Test Procedure. A typical run lasted for 15 seconds and can be divided

into four data collection phases. The first two phases involved taking ambient mea-

surements from each transducer and the thermocouple and then opening the vacuum

chamber valve. The third phase included opening the high-pressure tank valve and

starting the wind-tunnel. During this third phase, labeled the tare phase, the ramp is

not deployed. The tare pressures from each transducer, PTare,ζi , are the time-average

of the static pressure readings from each transducer over this phase after the pres-

sures have steadied. Typical tare flow is for approximately two seconds on each run.

The final phase, in which data was recorded, started when the ramp was deployed to

cause changes in PBP and the individual static pressures, Ps,ζi . After data collection

had ended, the run concluded when the high-pressure valve and the vacuum chamber
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Figure 3.5: (a) Data collection phases and high-frequency pressure measurements (b)
Ramp deployment angles

valve were closed. A plot of the measurements from six pressure transducers as well

as the ramp deflection angle for run 4.9, to be discussed in Chapter IV, is presented

in Fig. 3.5.

3.2.2 Test Section Shock Waves. A plot of the static pressure along the

test section floor and ceiling prior to ramp deployment is presented in Figure 3.6 for

Re=4.9×106/ft. and Figure 3.7 for Re=7.3×106/ft. In each of the figures, the pressure

plot is presented in the (a) plot and a shadowgraph image of the entire test section

(created by pasting three images together to get the full test section) is presented in

each (b) plot. As can be seen in the pressure plots, the pressure generally increases
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along the test section, which would be expected in typical Fanno flow without a shock.

The flow in the initial portion of the test section does not follow this assumption,

though, and exhibits a significant pressure fluctuation in the 3-5 in. region primarily

along the top of the test section. Potential sources of this increase are the nozzle

asymmetry and the interface between the nozzle and the test section which has a

0.011 in. lip that could cause the shocks that are obvious in the shadowgraph images.

The cause of the step between the nozzle entrance and the test section entrance is the

slight difference in dimensions between the two as presented in Figure 3.8. In addition

to the vertical dimension, there is also a dimensional difference in the horizontal plane,

but there is no way to experimentally measure the horizontal plane effects since, other

than the single PBP transducer, there are no transducers mounted on the wall and

the shadowgraph can not be placed to record vertically. There does seem to be a

correlation, particularly in the low Reynolds number flow, between a shock impinging

on the ceiling or floor and an increase in the static pressure. Additional research

would be needed to discern the source of the pressure increase but it could be due to

the nozzle asymmetry across the horizontal axis. A drawing of the nozzle contour is

presented in Figure 3.3 and it can be seen that the nozzle top and bottom contours

are not the same. This most likely results in asymmetric flow from the nozzle into the

test section and potentially results in the pressure gradients noticed. For the purposes

of the control and measurement algorithm, this pressure increase can cause an error in

the calculated shock train location using pressure measurements. This error is evident

when pressures are measured near the nozzle exit and will be discussed in Section 6.4.

3.2.3 Choke Points. In addition to the shocks that travel down the test

section, the flow control was also degraded by a choke point upstream of the stagnation

chamber. Throughout the testing a M=1.80 nozzle was used as shown in Figure 3.3.

Assuming M=1.80, and isentropic flow, then A∗/AT = 0.6949 and, since the test

section has a 2.5 in. × 2.5 in. square cross-section, AT=6.25 in.2 where AT is the test
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Figure 3.7: (a) The test section static pressures on the floor and ceiling (b) A shad-
owgraph of the entire test section (Re = 7.3× 106/ft.)

section cross-sectional area and A∗ is the cross-sectional area of a M=1 throat. As a

result, the flow will potentially choke where the cross-sectional area is less than 4.34

in.2. Potential choke points include the piping downstream from the air filter which

has an internal cross-sectional area of approximately 23/4 in.2, the pneumatic control

ball valve with an internal cross-sectional area of approximately 11/2 in.2, any potential
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openings/fittings within the air filter, and the pressure valves in the flow. The result

of the choke point was evidenced in a decrease in the available total pressure, P0,

range for testing. The maximum total pressure achievable in the stagnation chamber

using the M=1.80 nozzle is approximately 24.5 psia with a resultant Reynolds number

of 7.6×106/ft.

3.3 Ramp Actuator Dynamics

The ramp dynamics were considered in order to develop a more complete model

of the system for use in the control algorithm to be discussed in Chapter VI. The

approach taken to model the ramp was to provide sinusoidal inputs to the ramp from

0.5 Hz to 50 Hz. The commands were generated using the pre-packaged LabVIEWTM signal

generator code. The commanded ramp angle, φCtl and the measured ramp angle,

φMeas, were recorded throughout the run. In order to increase the LabVIEWTM cycle

rate, no other calculations were accomplished in the run. Additionally, no air was

applied, so all the frequencies were tested in a single run. The sample rate for the

ramp actuator study was 1 kHz.

33



The data was post processed and a Bode plot using φCtl as the input and φMeas

as the output was created as presented in Figures 3.9a and 3.9b. First, notice the

actuator only has a 10 Hz bandwidth although the ramp assembly mass was reduced

by removing the ceiling-mounted ramp sub-assembly. As a result, the ramp assembly

is not able to control around any disturbances with a frequency greater than 10

Hz. The magnitude plot reveals that a two-pole transfer function with both poles

at approximately 10 Hz adequately models the ramp at these lower frequencies. As

can be seen by the significant phase drop in the phase plot, there is a significant

transport lag. The transfer function that best fits the data in these lower frequencies

is presented in Equation (3.1) and, in z-space, with ∆t = 0.001 sec., in Equation (3.2)

where z is the z-transform operator. The full ramp transfer function was used to

develop the control algorithm to be discussed in Chapter VI.

GRamp(s) =
27225

(s+ 164.9)2 e
−0.018s (3.1)

GRamp(z) =
0.012204 (z + 0.8959)

(z − 0.8479)2 z−18 (3.2)

34



10−2 10−1 100 101 102
−40

−30

−20

−10

0
10

Frequency, Hz

M
ag

ni
tu

de
, d

B

 

 

Measured
Modeled

10−2 10−1 100 101 102
−1500

−1000

−500

0

500

Frequency, Hz

Ph
as

e 
A

ng
le

, d
eg

 

 

Measured
Modeled

-3 dB

-180 deg.

(a)

(b)

Figure 3.9: Transfer function of ramp input/measured output angle

35



IV. Shock Train Leading Edge Location Measurement

Techniques

In order to control the location of the shock train LE, one must be able to measure

the shock train LE location. The objective of this portion of the research was to

develop and validate an algorithm capable of locating the shock train LE with the

set of pressure transducers mounted along the test section floor. Six algorithms were

compared to one another using the shadowgraph shock train location data as the

“truth” data. Since previous studies [21–23] have shown accuracy equal to the distance

between transducers, a goal of the research was to provide a validated algorithm to

provide shock train LE location measurements with errors less than the distance

between pressure transducers.

The research considered six previously demonstrated [23–25] shock train loca-

tion measurement techniques. The first technique considered located the shock train

leading edge using the ratio of the static pressure measurement at each transducer to

the time average static pressure measurement at the same transducer taken during

the tare portion of the run. In the second technique, the shock train LE location

was calculated using the increase in static pressure along the test section with each

set of pressure measurements. The increase in the pressure measurement standard

deviation was used for the third technique. The fourth technique used the increase

in the pressure measurement frequency content coincident with the shock train LE to

determine the LE location. In the final two techniques, a correlation was developed

between the shock train LE location measured using the shadowgraph imagery and

either the sum of the static pressures or the back pressure. The shock train LE lo-

cation could then be calculated using the correlation. For those utilizing pressure or

frequency increase, different percent increases were also considered. The accuracy of

each technique was then assessed against the high-speed shadowgraph LE measure-

ments in post-processing. The most accurate techniques were then implemented in

the LabVIEWTM system and run real-time to investigate their suitability for real-time

control. The contribution of this portion of research is that, unlike previous research,
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the shock train LE location from the six methods, xMeas, was compared to the ex-

perimentally derived truth data, in this case the 500 frames per sec. shadowgraph-

measured shock train location, xOptic.

Fourteen runs were studied for this portion of the research, as presented in Ta-

ble 4.1 where T0 is the total pressure in Rankine, R, and P0 is the total pressure (psia).

In each run, the downstream-mounted ramp was quickly (approximately 20 ms) raised

to the ramp angle indicated in Table 4.1, Column 2 to approximate a step input. In

run 4.9, the ramp was raised to four different angles, φCtl = [17.5, 19, 17.5, 19] so

measurements could be made in both transient and long steady-state conditions. In

runs 4.10-4.14 the ramp angle followed a five-level Amplitude-Modulated Pseudo-

Random Binary Sequence (APRBS) [58] after the wind tunnel was started. The

APRBS routine was selected to validate the measurement algorithm with significant

dynamic inputs since APRBS inputs were chose for use as the input for the system

identification techniques presented in Chapter V. The APRBS routine is described

in further detail in Appendix D and the ramp angles are noted as “APRBS” in Ta-

ble 4.1. Finally, the developed measurement algorithm was implemented for real-time

shock train location recording and tested at different Reynolds number settings in

runs 4.12-4.14.

4.1 Method Descriptions Along with Results and Analysis

Six methods were considered for calculating the shock train LE location. These

methods include the pressure ratio method presented in Subsection 4.1.1, the pressure

rise method presented in Subsection 4.1.2, the standard deviation method in Subsec-

tion 4.1.3, the frequency content method in Subsection 4.1.4, the pressure summation

method in Subsection 4.1.5, and the back pressure method in Subsection 4.1.6.

The analysis of each technique includes a plot of the detected shock train loca-

tion from run 4.9. Run 4.9 was chosen for algorithm development since it incorporates

both significant ramp changes and long periods with no control inputs. The analy-

sis for each technique will also include a plot of error in the detected shock train
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Table 4.1: Test section operating runs

Run Ramp Angle, deg P0, psia T0, R Re Number

4.1 15 24.46 521 7.58 ×106/ft.

4.2 16 24.43 521 7.57 ×106/ft.

4.3 17 24.42 520 7.57 ×106/ft.

4.4 17.5 24.41 519 7.57 ×106/ft.

4.5 18.5 24.42 520 7.57 ×106/ft.

4.6 19 24.44 521 7.57 ×106/ft.

4.7 19.25 24.44 520 7.58 ×106/ft.

4.8 19.5 24.43 520 7.57 ×106/ft.

4.9 17.5, 19, 17.5, 19 24.45 520 7.58 ×106/ft.

4.10 APRBS 24.45 520 7.58 ×106/ft.

4.11 APRBS 24.42 521 7.57 ×106/ft.

4.12 APRBS 23.82 525 7.20 ×106/ft

4.13 APRBS 19.88 529 6.04 ×106/ft

4.14 APRBS 15.84 530 4.78 ×106/ft

location. The vector of errors, e is defined as the difference between the vector of

detected LE locations for all ns time samples in a run, xMeas, and the vector of the

LE locations from the shadowgraph, xOptic, according to Equation (4.1). Note that

xMeas is down-sampled from 10,000 Hz to 500 Hz for the so it is the the same length

as xOptic. Further, the optical and measurement data were synchronized by aligning

the initial large motion of the shock train LE. The runs presented in Chapter V and

Chapter VI were sampled at 1000Hz. The 500 Hz results are used for all location and

error plots for clarity. The root mean square (RMS) of the error is then the RMS

of e as defined in Equation (4.2). After comparing the results of each technique on

run 4.9 where the ramp was changed four times between 17.5 and 19 deg., run 4.10

was considered to compare the most accurate techniques using several ramp input

changes throughout the run. The final measurement algorithm was selected using the

data from run 4.10. Run 4.11 was used to validate the dynamic models developed in

Chapter V after they were developed using the data from run 4.10. The measurement
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algorithm was then validated at different Reynolds numbers using the data from runs

4.12-4.14 in Section 4.3.

e = xMeas − xOptic (4.1)

eRMS =

√
e2(1) + e2(2) . . . e2(ns)

ns
(4.2)

4.1.1 Pressure Ratio Method. The first of the six considered methods was

labeled the pressure ratio method. The result of the pressure ratio method was labeled

xPR(k) and was based on the ratio between the static pressure at each transducer with

the ramp deployed and the tare pressure for the same transducer. The tare pressure

is defined as the static pressure in the test section when there is flow, but prior

to ramp deployment. PTare,ζi was the time-average of approximately two seconds

of data at transducer i. Note, that, for simplicity, the term ∆t will be assumed

throughout the remainder of this research, so xPR(k) implies xPR(k∆t). To implement

the pressure ratio method, the average tare pressure readings for each transducer in

the test section, PTare,ζi , was compared to the static pressure at each sample, k, for

the same set of transducers, Ps,ζi(k). A vector of the transducer pressure ratios as

shown in Equation (4.3) was then created.

PR(k) =

[
Ps,ζ1(k)

PTare,ζ1

Ps,ζ2(k)

PTare,ζ2
· · · Ps,ζ14(k)

PTare,ζ14

]
(4.3)

The shock train location is then calculated for each k, by linear interpolation,

using the vector of pressure ratios PR(k), a vector of the transducer mounting lo-

cations, xTrans, and the desired pressure ratio, PRDes as in Equation (4.4) where

interp implies linear interpolation. The linear interpolation method is detailed in

Appendix B. PRDes is the pressure ratio defined to be indicative of the shock train

LE location.

xPR(k) = interp(PR(k),xTrans, PRDes) (4.4)
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The pressure ratio for each transducer along with the mounting location for each

transducer is displayed in Figure 4.1 with an example PRDes = 1.50. The PRDes

points are based off the desired percent increase, ξDes, in the pressure ratio. The

PRDes points considered in this research were PRDes = 1.25, 1.50, and 1.75 repre-

senting ξDes = 25%, 50%, and 75% static pressure increase in comparison to the tare

pressures. The LE locations using this method at different ξ levels are presented in
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Figure 4.1: Illustration of pressure ratio measurement method

Figures 4.2a - 4.2c and the error is presented in Figures 4.2d - 4.2f. As can be seen,

the 50% pressure increase criterion closely matches the location of the shock train

LE throughout the run. This result confirms, based on shadowgraph shock train lo-

cation measurements, previous research [24, 25] that the desired percent increase in

the pressure is roughly 50% although the previous research was not confirmed with

shadowgraph imagery taken at 500 frames/sec nor did it vary the percent increase

level. The eRMS result from this run is 0.3 in. (12% of D) and is also presented in

Table 4.2 in the summary, Section 4.4.
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Figure 4.3: Illustration of pressure increase method

4.1.2 Pressure Increase Method. The second method, labeled the pressure

increase method with the result labeled xP (k), was based on the increase in static

pressure along the test section with the ramp deployed. The method relied on the

pressure increase from the first transducer, ζ1, to the maximum test section static

pressure measurement, Ps,max. An illustration to help clarify this method is presented

in Figure 4.3. In this figure, the average tare measurement is provided as the blue line

along the bottom to show the static pressure measurements before ramp deployment.

The circle plots with the vertical lines are the average pressure measurements along

with the pressure standard deviation from 300 data points taken when the shock train

was in steady-state with a mean at approximately 7 in. Finally, the red star is the

interpolation point that is used to locate the shock train LE location. The use of the

pressure increase across the test section is similar to previous research [38] in which a

percentage of the entire static pressure increase is used as an indication of the shock

train location. In this method, first a vector of the static pressures along the test
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section at each sample, k, was created as seen in Equation (4.5).

Ps(k) = [Ps,ζ1(k) Ps,ζ2(k) . . . Ps,ζ14(k)] (4.5)

The desired interpolation pressure was calculated using an equation similar to one

from previous research [38] and a desired percent increase, ξDes as presented in Equa-

tion (4.6)

Ps,Des(k) = Ps,ζ1(k) + ξDes(Ps,max(k)− Ps,ζ1(k)) (4.6)

where Ps,Des is the desired pressure for interpolation. Finally, the shock train LE

location was calculated for each sample, k, by interpolation using the vectors, Ps(k)

and the transducer locations xTrans along with the calculated Ps,Des(k) according to

Equation (4.7). In Equation (4.7) interp implies using linear interpolation as it did in

the previous section and the linear interpolation method is detailed in Appendix B..

xP (k) = interp(Ps(k),xTrans, Ps,Des(k)) (4.7)

Unlike the previous method, this method requires no prior knowledge of a tare

state and is, therefore, more operationally feasible. Inherent in this method is a fairly

smooth increase in the static pressure, though. As was noted in Chapter III, the static

pressure increases in the first five inches of the test section so location measurements

using this method in the first five inches of the test section were problematic (this will

be discussed in Section 6.4). This upstream inaccuracy is not inherent in the pressure

ratio method since the pressure rise is in the tare pressure, which is then divided to

create the pressure ratio vector. Since the pressure rise is in both the tare and the

ramp-deployed pressure readings, it divides to a ratio of 1 unless the shock is over an

upstream transducer. The shock train LE location as predicted using this method and

different percent increases is presented in Figures 4.4a-4.4c and the error for each of

the percent increases is presented in Figures 4.4d-4.4f. As was noticed in the previous

method, the ξDes = 50% increase criterion was the closest to the shadowgraph results,
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reaffirming previous research [25, 38]. The eRMS result from this run is 0.3 in. (12%

of D) and is also presented in Table 4.2.
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Figure 4.4: Pressure increase method measurement and error plots
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4.1.3 Standard Deviation Method. The third method, labeled the stan-

dard deviation method with the results labeled xσ(k), was based on the increase in

standard deviation, σ, of the static pressure measurements. The method relied on

increases in the pressure σ when a shock train LE oscillates over or is upstream to a

transducer as noted in previous research [25]. The increase in standard deviation was

also noted in this research. Specifically, it was noted that the pressure standard de-

viation is lower when the LE is downstream relative to the measuring transducer and

the standard deviation increases when the LE is upstream of a transducer. Finally,

there is a significant increase in the pressure standard deviation when the shock train

LE oscillates directly over the transducer. A plot of the pressure standard deviation

measurements throughout run 4.9 for a transducer mounted at 9.7 in. is presented in

Figure 4.5. The increases when the LE traverses the transducer as well as the two

standard deviation levels when the LE is upstream and downstream relative to the

transducer are noticeable on this plot. A very thin spike that is three to four times

higher than the downstream standard deviation can also be seen in Figure 4.5 when

the shock train LE crosses over the transducer.
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Figure 4.5: Standard deviation measurement throughout run 4.9 measured at 9.7 in.
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A plot of the standard deviation measured along the test section at the different

transducers is presented in Figure 4.6. In Figure 4.6 the predicted shock train LE

standard deviation is displayed as σDes, σ1 is the maximum σ in the test section and

is located at x1. Also, σ0 is the standard deviation in the transducer just upstream

to the transducer measuring σ1 and x0 is mounting location for that transducer.

Finally, σ2 is the standard deviation in the transducer mounted just downstream to

the transducer measuring σ1 which is located at x2. These standard deviation and

location measurements are used to locate the shock train LE using three assumptions

with the assumed standard deviations valid at the tested Reynolds number:

1. When the standard deviation is measured to be greater than 18 psia at any

transducer, the shock train LE is assumed to be over that transducer

2. When the 5 < σ1 < 18, the shock train oscillations span two transducers, as

in Figure 4.6. In this case, the shock train LE standard deviation (σDes) is

assumed and the LE location is projected with a straight line

3. When there is no measurement greater than 5 psia, the shock train LE oscilla-

tions over the previous 250 samples were assumed to be predominantly between

two transducers. The shock train LE is then assumed to be midway between

the maximum and downstream transducers used in the previous shock train

location calculation.

The first assumption was made by studying Figure 4.5. When the LE crosses the

transducer, the standard deviation jumps above 18 psia at this Reynolds number. The

differences in the absolute values are most likely due to timing differences between

when the shock train LE is atop a transducer and the time a pressure is sampled.

Assumption two arises from Figure 4.6 in which the LE location is oscillating pri-

marily between sixth (x1) and seventh (x2) transducers. This can be noticed by the

significant standard deviation increase at transducer six (x1) and the slight increase

at transducer seven (x2). This indicates that the majority of the increased pressure

readings are over transducer six at x1, but a few increased pressure readings (over the
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nominal downstream pressure reading) are over transducer seven at x2. A straight

line assumption is then made to the desired standard deviation to locate the shock

train LE. The final assumption arises from the handful of times when the standard

deviation did not spike at any transducer. In this case, it was assumed that the LE

was oscillating between two transducers and the LE location was just assumed to be

the midpoint between the transducers used in the previous sample set calculation.
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Figure 4.6: Diagram of the standard deviation method implementation

The σ used for each sample, k, was based on the previous 250 samples (i.e.

σ((k− 250) : k)) with a 10 kHz sampling frequency. The procedure for this technique

was to first collect a vector of standard deviations, as seen in Equation (4.8)

σ(k) = [σζ1(k) σζ2(k) . . . σζ14(k)] (4.8)
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where

σζi(k) ≡ σ(Ps,ζi(k)). (4.9)

and σ is a vector of the test section σ measurements. The projection point σDes,

assuming 5 < σ1 < 18, was then defined and xσ was calculated using a linear projec-

tion assuming a continuation of the slope from (x0, σ0) and (x1, σ1) as presented in

Equations (4.10)-(4.12)

Slope =
σ1 − σ0

x1 − x0

(4.10)

σInt = σ1 − Slope · x1 (4.11)

xσ =
σDes − σInt
Slope

(4.12)

The σDes values considered in this research were σDes ∈ [12, 14, 16, 18]. The

calculated shock train location for each sample set is presented in Figure 4.7a and

the error in the shock train location is presented in Figure 4.7b for the case when

σDes = 18 in. For each of the σDes values, eRMS = 1.10 in. or 44% of a duct height,

D, so, due to the similarity of the plots, they are not presented.

While the standard deviation was able to predict the shock train LE location to

within the distance between transducers, the method, using these assumptions, was

barely able to do so. The primary reason for this is that the algorithm is looking for

a thin standard deviation spike that is often between transducers. To gain additional

accuracy, additional transducers are required, which is not the case with the other

methods. It will also be seen that the standard deviation is less accurate than any

of the other methods to be discussed. Additionally, the method is (marginally) more

computationally expensive than using the pressure increase methods. Finally, due

to the consideration of the previous 250 samples, there is an inherent latency in

the algorithm. As a result of these considerations, the standard deviation is not an
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Figure 4.7: Shock train LE location and error using standard deviation method

optimal method for locating the shock train LE and will not be considered further.

The eRMS result from this run was 1.10 in. (44% of D) and is presented in Table 4.2

for comparison to other methods.

4.1.4 Shock Train Location from Frequency Content. The fourth method

was based on the increase in the power spectral density (PSD) of the pressure measure-

ments on the wall at the shock train LE. The results of the PSD method are labeled

xΨ(k). When the shock train LE is downstream of a particular pressure transducer,

there is less power in the higher frequency portion of the PSD, labeled with the sym-
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bol ψζi [24,25,39,59]. Conversely, when the shock train LE is upstream to a pressure

transducer, there is an increase in the high frequency portion of the particular ψζi .

This can be noted in Figure 4.8 in which the PSD is plotted for two transducers, one

located at x = 10.9 in. and the other located at x = 15.6 in. while the LE is oscilating

between 12.5 in. and 13.5 in. Specifically, PSDs were taken at the seven second point

in run 4.9 according to the procedure explained in this section. As can be noticed,

the transducer (at x = 10.9 in.) upstream to the LE location has a lower overall PSD

measurement in relation to the transducer (at x = 15.6 in.) mounted downstream to

the LE.
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Figure 4.8: PSD for two transducers with LE between them

The method that was used to locate the shock train using the frequency con-

tent first involved taking the one-sided PSD of the previous 512 samples for all

test section transducers as in Equation (4.13). To calculate the PSD, the Matlabr
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pwelch.m command was used. A PSD calculation method is detailed in Appendix B.

The output of the pwelch.m command was a vector of the power per frequency,

[ψPs,ζi(f1) ψPs,ζi(f2) . . . ψPs,ζi(fm)], which was then used in the RMS calculation.

ψPs,ζi (k) = PSD(Ps,ζi((k − 512) : k)) (4.13)

The RMS value of the one-sided ψζi was then calculated according to Equation (4.14).

The ψRMS,i values were then concatenated to form the vector, ΨRMS according to

Equation (4.15). The vector ΨRMS was then split into values greater than and less

than 0.1, representing values upstream and downstream relative to the shock train

LE location. It was determined after several runs that the value of ΨRMS = 0.1

was the limit for transducer ΨRMS values when the shock train LE was downstream

relative to the transducer. This value would need to be reevaluated if used on a

different test section or flow conditions. The mean of the upstream transducer ΨRMS

values was then calculated and used for percent increase calculations. The shock train

location was then calculated using linear interpolation based on a desired percent

increase, ξDes, in the ΨRMS vector along with the transducer locations as presented

in Figure 4.9.

ψRMS,i =

√
ψ2
s,ζi

(f1) + ψ2
s,ζi

(f2) + . . .+ ψ2
s,ζi

(fm)

m
(4.14)

ΨRMS = [ψRMS,1 ψRMS,2 . . . ψRMS,14] (4.15)

The results from using the PSD to locate the shock train LE at various ξ settings

are presented in Figures 4.10a-4.10c and the error, as calculated using Eqn. (4.1), is

presented in Figures 4.10d-4.10f. These results indicate that the PSD using the 25%

increase interpolation point can be used as an accurate indication of the shock train

LE location. Further, using the PSD requires little to no prior knowledge to calculate

the shock train LE location. The method is the most computationally expensive of

the ones considered in this research, though. Due to the accuracy of the method
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Figure 4.9: Illustration of the PSD method

and the potential for operational and laboratory use, assuming fast computation, the

method was reconsidered using the data from run 4.10. The eRMS result from this

run is 0.46 in. (18.4% of D) and is also presented in Table 4.2.
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Figure 4.10: Frequency content method measurement and error plots

53



4.1.5 Static Pressure Summation Method. The next LE detection technique

considered was based on a technique used by NASA in the 1970s [26] as well as in

contemporary research [39]. The method involved creating a static model relating the

sum of the wall pressures to the shock train LE location. The static model accepted the

sum of the static pressure measurements as the input and returned the LE location,

labeled xSum(k) as the output. The relationship can be seen in a plot displaying

xOptic and the sum of the pressure transducer readings at k, PSum(k), in Figure 4.11.

The data used to create Figure 4.11 was from runs 4.1-4.8. As can be seen, there

is a predictable relationship between the sum of static pressures and the shock train

location for a given Reynolds number. The sum of the pressure transducers from each

sample was then used in a least squares regression to provide the static polynomial

model provided in Equation (4.16).

xSum(k) = 104.08− 1.96PSum(k) + 1.39× 10−2P 2
Sum(k)− 3.47× 10−5P 3

Sum(k) (4.16)

After creation of the static model, the sum of the static pressures was then run

through Equation (4.16) to locate xSum at each k for the data collected from run 4.9.

The location results from this analysis is presented in Figure 4.12a and the error is

presented in Figure 4.12b. As can be seen, there is a very good correlation between

the LE location as a result of the sum of the pressures and the LE location from the

shadowgraph photography. Unfortunately, this method requires a significant amount

of preliminary research into the pressure relationships within the isolator test section.

Additionally, a correlation developed at one Reynolds number may not be relevant

at another Reynolds number, depending on how different the flows are. As a result,

while these results indicate the method can be very accurate in the laboratory, it is

probably not the best option for operational use. Due to the accuracy, although a

significant amount of prior knowledge is necessary for the method, the method was

considered in the real-time implementation study. The eRMS result from this run is
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Figure 4.11: Illustration of the pressure sum method data and static model

0.27 in. (10.8% of D) and is also presented in Table 4.2 for a comparison to other

methods.

55



5 10 15
0

5

10

15

Elapsed Time, sec.
Sh

oc
k 

Tr
ai

n 
LE

 L
oc

at
io

n,
 in

.

 

 

Video Data
Sum Data

5 10 15
−5

−2.5

0

2.5

5

Elapsed Time, sec.

Sh
oc

k 
Tr

ai
n 

LE
 L

oc
at

io
n 

Er
ro

r, 
in

.

Video Data 
 

Measurement 

(a) 

(b) 

Figure 4.12: Sum of pressures correlation method measurement and error plots

4.1.6 Back Pressure Method. The final method considered for locating a

shock train LE within the isolator used the back pressure, PBP , as the input and

returned the LE location, labeled xBP (k). In this method, similar to the sum of

pressures method, a static polynomial model was developed using a least squares

regression. The data used to develop the model, presented in Equation (4.17), was

from runs 4.1-4.8.

xBP (k) = −218.53 + 45.14PBP (k)− 2.16P 2
BP (k) (4.17)

A plot of the data used in the least squares procedure to create the static polynomial

model relating PBP to xOptic along with a line created using the polynomial is presented
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Figure 4.13: Diagram of the back pressure method data and static model

in Figure 4.13. The results of running the measured back pressure at each sample

from run 4.9 into the back pressure polynomial model is then displayed in Figure 4.14a

and the error is displayed in Figure 4.14b. The back pressure method, while able to

predict the shock train LE location, resulted in noisy measurements. Additionally,

a significant amount of prior knowledge about the back pressure to shock train LE

location was necessary to develop the static polynomial model used in the method.

As a result of the previous considerations, the method will not be considered further

for locating the shock train LE but, with the addition of a dynamic model, can be

used to model the shock train LE location as will be presented in Chapter V. The

eRMS result from this run is 0.79 in. (31.6% of D) and is also presented in Table 4.2.
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Figure 4.14: Back pressure correlation method measurement and error plots

4.2 Complex Input Run

The previous analysis included consideration of the ability of each method to

detect the shock train LE location on run 4.9, a run with only four changes in ramp

angle. A final test, prior to control algorithm development, for the most accurate

techniques as measured by the eRMS metric, is to consider a run with additional

ramp changes, referred to as a ‘complex iunput’. The run chosen for the final post-

processing comparison was run 4.10 and the ramp inputs after initially rising from

the floor are presented in Figure 4.15. The ramp inputs used were from a five-

level APRBS [60] and the APRBS algorithm is detailed in Appendix D. The use of

an APRBS excitation signal allowed later system dynamic modeling research using
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system identification which will be presented in Chapter V. The methods chosen

for this run were the PSD method, the PSum static model method, the pressure rise

method, and the pressure ratio method. The location, as predicted by each method,

is presented in Figures 4.16a-4.16b and Figures 4.17a-4.17b. The error is presented

in Figures 4.16c-4.16d and Figures 4.17c-4.17d. As can be seen, each of the detection

methods were able to detect the shock train location within 40% of a duct height, D,

whereas the transducers were separated by 47.6% of D, so they all met the desired

accuracy. The eRMS results from this run are presented in Table 4.2. While the

pressure increase method returned the best result for this run, the results indicate

they are all potentially useful for an automatic control algorithm. The pressure rise

method was determined to exhibit the best trade-off between accuracy, computational

speed, and minimal required previous knowledge and was used for model development

in Chapter V and control algorithm development in Chapter VI.

Table 4.2: Measurement results for the various measurement techniques

Method Interpolation
Percent

Run 4.9
eRMS, in.

Run 4.9
eRMS, % of D

Run 4.10
eRMS, in.

Run 4.9
eRMS, % of D

PSum N/A 0.27 10.8 0.34 13.6

Pressure
Rise

50% 0.30 12.0 0.23 9.2

Pressure
Ratio

50% 0.30 12.0 0.48 19.2

ΨRMS 125% 0.46 18.4 0.38 15.2

PBP N/A 0.79 31.6 N/A N/A

σζi N/A 1.10 44.0 N/A N/A
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Figure 4.15: A plot of the ramp angle for run 4.10
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Figure 4.16: Complex input stream run results for ratio and summation methods
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Figure 4.17: Complex input stream run results for ratio and PSD methods
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In order to further consider the robustness of the pressure increase method, run

4.10 was reanalyzed with the assumption that half of the transducers were removed.

As a result of this assumption, the transducers were separated by 2.3760 in. (trans-

ducer center to center) or 95% of D. The result is an increase in the eRMS value

to eRMS = 0.40 in. or 16% of D. The eRMS = 0.23 in. when the transducers were

positioned at 47.6% of D using this technique. Additional study with different trans-

ducer separation values is necessary to determine if there is a constant relationship

between the transducer spacing and the measurement eRMS value. A plot of the lo-

cation and the error when the transducers were separated by 95% of D is presented

in Figure 4.18.
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Figure 4.18: 50% pressure rise method measurement and error plots with transducers
separated by 95% of D
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4.3 Real-Time Implementation

After post-processing analysis of the various algorithms, the pressure increase

method was implemented into a LabVIEWTM routine. The shock train LE location

xP was calculated at each step, k, throughout runs 4.12-4.14 to validate the method

at different Reynolds numbers. The shock train LE location using the shadowgraph

was then measured after each run was accomplished. In this, and for the remainder

of the research, the LE location, xMeas, will always imply the pressure rise method at

50% pressure increase indicated shock train LE location, xMeas ≡ xP . The shock train

LE location from runs 4.12-4.14 is presented in Figures 4.19a-4.19c and the error is

presented in Figure 4.19d-4.19f. The RMS values from the real-time implementation

were all less than 40% of D whereas the spacing between the transducers was 47.6%

of D. The eRMS values for runs 4.12-4.14 are presented in Table 4.3

Table 4.3: Measurement results from real-time implementation

Run Re Number, /ft eRMS, in. eRMS, % of D

4.12 7.20 ×106 0.23 9.2

4.13 6.04 ×106 0.43 17.2

4.14 4.94 ×106 0.39 15.6
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Figure 4.19: Real time pressure increase method location and error plots across
Reynolds numbers (ξ = 50%)

4.4 Summary and Conclusion

Six methods for locating the LE of a shock train were investigated using post-

processing in this chapter. After post-processing consideration, one method was se-

lected and was implemented in LabVIEWTM to collect shock train measurement data

throughout a run. The methods considered included the pressure ratio method, the

pressure increase method, the standard deviation method, the PSD method, the sum-

mation static model method, and the back pressure static model method. All of the

detection methods used an array of pressure transducers mounted along the centerline

of the floor of the test section and/or a single transducer mounted in the side wall.

Back pressure was varied using the ramp assembly in the far downstream portion of

the test section.
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The detected shock train LE locations from each of the methods were calcu-

lated and compared to measured results using high-speed shadowgraph photography,

xOptic. The shadowgraph videos were analyzed on a frame-by-frame basis to locate

the shock train LE for the entirety of each run. The shadowgraph data collection

method is detailed in Appendix E. The measured eRMS values for the two post-

processed runs under study are presented in Table 4.2. This table included results

from runs 4.9 and 4.10 and revealed that the pressure increase method was one of

the more accurate methods. The pressure increase method was then implemented in

the LabVIEWTM routine for real-time testing. The eRMS results for the three real-

time implemented runs are presented in Table 4.3. After implementation into the

LabVIEWTM routine, the method was able to measure the shock train LE location to

within 18% of D.

The pressure ratio method was chosen for implementation as a part of this

research for three reasons. First, the method was computationally one of the most

simple in comparison to the other methods compared since it only requires a single

calculation for the interpolation point and linear interpolation. Second, the method

required no previous knowledge prior to detecting the shock train LE. Finally, the

pressure rise method was one of the most accurate methods in comparison to the

shadowgraph results.
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V. Shock Train Location Modeling

The purpose of this chapter is to discuss the dynamic shock train leading edge (LE)

location modeling efforts and results achieved as a part of this research. A dynamic

model of the engine was used to develop and implement an automatic control algo-

rithm for positioning the shock train LE location within the AFIT cold-flow blow-

down wind tunnel. In this research, a set of dynamic models were initially developed

relating the back pressure, PBP , to the shock train LE location, xMeas. The intention

of this initial set of dynamic models was to develop a model structure that could be

adapted to different test sections. After the development and the comparison of these

initial dynamic models and the decision to use a particular structure, that model

structure was used to develop a model that related the measured ramp angle, φMeas,

to xMeas. The φMeas to xMeas model, along with the ramp assembly transfer function

presented in Equation (3.2) were then used to develop and validate the control algo-

rithm presented in Chapter VI. All dynamic models were developed using a black-box

system identification approach.

The modeling efforts accomplished as a part of this research have roots in histor-

ical [7, 32] perturbation theory-based efforts. In these studies, a perturbation-theory

approach was used to develop dynamic models relating flow pressure disturbances to

the normal shock location in a duct using the normal shock relations. The downside to

the models developed using a perturbation theory approach to linearize the nonlinear

normal shock relations was that the input space of pressure distributions over which

the equations were developed was limited. In order to control the shock train LE,

the input space for the model must include back pressures capable of changing the

shock train LE location throughout the entire test section. As a result of the desire

to use models that were developed for small pressure perturbations, but have them

apply throughout the applicable pressure range, nonlinear static models were used to

provide the input to any of the dynamic models. The use of the static models had the

effect of increasing the input space of potential pressures to the overall model. This

structure of a static nonlinearity followed by a dynamic model is labeled a Hammer-
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stein structure which is noted as one of the best choices when the nonlinearity in a

system is primarily assumed in the input space [61]. Each of the models considered as

a part of this research was composed of a static nonlinear model as well as a dynamic

model to approximate a Hammerstein model.

As has been shown previously [62, 63], the shock train LE will oscillate up to

an equivalent diameter, De, about its mean position where De = 4×Area/Perimeter

and area and perimeter are cross-sectional measurements. Since the AFIT test section

has a square cross-section, the equivalent diameter is the same as the duct height, D,

which is 2.5 in. and the goal was to develop a dynamic model capable of predicting the

shock train LE location to within D. The metric for comparison to the duct height

criteria was the root-mean-square of the model error vector, eRMS, as calculated using

Equation (4.1) and Equation (4.2).

The first type of dynamic model considered was based on simple continuous

models. From the 1950s [32] through the 2000s [7], theoretical modeling of the shock

train LE location has been based on a perturbation analysis applied to the normal

shock equations. The resultant models indicated a first-order lag filter can be used to

model the back pressure to shock train LE location relationship. As a result, the first

continuous model considered was a first-order lag. Additional models incorporated a

zero and a pole at the origin on the Laplace-transform, s, plane. Each of these models

is presented in the first column of Table 5.2 in Section 5.2.

After considering the continuous models, an Auto-Regression with eXogenous

variables (ARX) model structure was then considered for the dynamic model. The in-

tention of using the ARX model structure was to increase the complexity of the model

from the simple continuous models while remaining linear (in the dynamic model).

The basic structure of the ARX models considered in this research is presented in

Equation (5.1) [5]

xs(k+1) = −a1xs(k)−. . .−anaxs(k−na)+b1uNL(k)+. . .+bnbuNL(k−nb)+e(k) (5.1)
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where e is the error, uNL is the input to the dynamic model (the output from the

static model), [a1 . . . ana ] and [b1 . . . bnb ] are the regression parameters and na and nb

are the number of parameters applied to the input and the output measurements.

The ARX model is discussed in detail in Appendix C. The parameters are optimized

using a least squares regression on the input and output measurements. Further, the

e term was not modeled in this research. Twenty-five different ARX models were

considered by varying the number of regression parameters, na and nb between one

and five parameters. It was found there no improvement in the modeling accuracy if

the number of regression parameters was increased beyond five parameters for either

the measurement or the input. The ARX modeling eRMS values are provided in

Table 5.3 in Section 5.3.

The final model structures considered were Nonlinear ARX (NARX) models. In

order to keep the number of models limited, only polynomial nonlinearities were con-

sidered and the maximum number of regression parameters considered were five. As a

result of these considerations, fifty-four NARX models were developed and validated.

These models are presented in Table 5.4 in Section 5.4. NARX models differ from

ARX models, in the implementation for this research, in that the input and output

measurements can be raised to varying powers and can be multiples of each other. All

NARX models were linear in the parameters and the regression parameters for each

were calculated using a least-squares regression. The NARX model is also discussed

in Appendix C.

Finally, two different types of results are presented in this research, simulation

and real-time results. The results presented in the continuous, ARX, and NARX

modeling subsections are the results of simulations. In these sections, a model was

developed first using data from run 4.10 in Table 4.1 and then a simulation was run

using the PBP measurements from run 4.11 in Table 4.1. In the simulation routine,

the output from the model, xModel, was used for the shock train LE location in each

successive calculation. As a result of using xModel, any previous modeling errors

69



Static 
Nonlinearity

Experimental 
Data Read File

Discretized (if applicable) Dynamic ModelPBP (k − 1)

PBP (k) uNL(k − 1)

uNL(k)
xModel(k + 1)

Simulation 
Output 

Read/Write 
File

xModel(k), xModel(k − 1), . . .

Figure 5.1: A schematic of the data flowing into the static and dynamic model for
simulation

were propagated through the simulation. The results from the simulation are then

compared to the actual measured outputs from run 4.11.

A schematic of the simulation process is presented in Figure 5.1. The process

began by opening the data file for the run under study. The algorithm stepped

through each k in the data set by first running PBP (k) and PBP (k − 1), the current

and previous back pressure measurements through the static nonlinearity to calculate

uNL(k) and uNL(k−1). The assumption is that no additional previous measurements

are needed and the algorithm would be changed for higher order discrete linear models.

The outputs from the static nonlinearity calculations were then used by the discrete

dynamic model along with previous dynamic model outputs. In the case that no

model outputs had been calculated, actual measured shock train locations were used

as the inputs to the discrete dynamic model.

In the real-time algorithm, the three models (a discretized continuous, an ARX,

and a NARX model) were implemented in LabVIEWTM along with the pressure rise

measurement algorithm developed in Chapter IV. The values for xMeas and PBP were

measured for each sample, k and then used in the implemented models to predict

the shock train location at the next step, xModel(k + 1). As a result of using xMeas

instead of xModel, modeling errors were not propagated through to the next prediction

to the same level as in the simulation, and the one-step prediction was more accurate

than the simulated response. The real-time results and a schematic of the real-time

process is provided in Figure 5.2 where ΘCont is the vector of continuous model re-

gression values, ΘARX is the vector of ARX model regression values, and ΘNARX is
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Figure 5.2: A schematic of the data flowing into the static and dynamic model for
real-time shock train location prediction

the vector of NARX model regression values. In Figure 5.2, first the static pressures

are measured and the shock train LE location is calculated using the pressure rise

method discussed in Chapter IV. Additionally, the back pressure is measured and fed

through the static nonlinearity to calculate the dynamic model input, uNL(k). Next,

a pair of LabVIEWTM z−1 blocks were used to record the uNL(k) and xMeas(k) for

use as uNL(k − 1) and xMeas(k − 1). The values of uNL(k), xMeas(k), uNL(k − 1),

and xMeas(k − 1) were then used in each of the different model algorithms, running

in parallel, to calculate the one-step predicted shock locations.

In addition to the runs detailed in Chapter IV, an additional set of runs were

accomplished. The list of runs accomplished are presented in Table 5.1. In runs 5.1-

5.8, the ramp was raised from 9 to 20 degrees in 1/2 deg. increments. The results from

71



those runs were combined to develop static models at two other Reynolds number

settings, as well as to refine the static models at the high Reynolds number setting.

In runs 5.9-5.20, additional APRBS runs were accomplished to refine the dynamic

models at the high, medium, and low Reynolds number settings. Finally, in runs

5.21-5.23, the refined models were implemented in LabVIEWTM and tested in real-

time runs at various Reynolds number settings.

Table 5.1: Test section operating runs

Run Ramp Angle, deg P0, psia T0, R Re Number

5.1 Step Inputs 21.54 525 6.61 ×106/ft

5.2 Step Inputs 16.31 526 4.97 ×106/ft

5.3 Step Inputs 14.85 512 4.48 ×106/ft

5.4 Step Inputs 14.86 513 4.48 ×106/ft

5.5 Step Inputs 19.63 511 5.97 ×106/ft

5.6 Step Inputs 19.63 511 5.97 ×106/ft

5.7 Step Inputs 23.60 511 7.25 ×106/ft

5.8 Step Inputs 23.68 512 7.27 ×106/ft

5.9 APRBS 14.91 513 4.49 ×106/ft

5.10 APRBS 14.92 513 4.49 ×106/ft

5.11 APRBS 14.92 513 4.49 ×106/ft

5.12 APRBS 14.92 513 4.49 ×106/ft

5.13 APRBS 23.40 512 7.10 ×106/ft

5.14 APRBS 23.41 512 7.12 ×106/ft

5.15 APRBS 23.42 512 7.11 ×106/ft

5.16 APRBS 23.41 512 7.11 ×106/ft

5.17 APRBS 19.25 512 5.84 ×106/ft

5.18 APRBS 19.27 512 5.85 ×106/ft

5.19 APRBS 19.27 512 5.85 ×106/ft

5.20 APRBS 19.28 512 5.85 ×106/ft

5.21 APRBS 14.93 513 4.49 ×106/ft

5.22 APRBS 18.80 513 5.67 ×106/ft

5.23 APRBS 23.46 514 7.08 ×106/ft

72



5.1 Static Polynomial Model

Each model presented in this dissertation is composed of both a static nonlin-

ear model and a dynamic model as required in the Hammerstein model structure.

These models combine to relate na back pressure or ramp angle measurements along

with nb shock train LE location measurements to a predicted shock location labeled

xModel(k + 1). The initial nonlinear static models were developed by combining the

PBP or φMeas and xMeas measurements from runs 4.1 through 4.8, assuming a static

model structure (i.e. a polynomial of a certain order), and then using a least squares

regression to calculate the regression parameters. The regression matrix used in the

least squares calculation for the PBP to xMeas model is presented in Equation (5.2)

and the calculation for the regression polynomials is presented in Equation (5.3)

XNL =




1 PBP,1(1) P 2
BP,1(1)

1 PBP,1(2) P 2
BP,1(2)

...
...

...

1 PBP,1(N1) P 2
BP,1(N1)

1 PBP,2(1) P 2
BP,2(1)

...
...

...

1 PBP,7(N7) P 2
BP,7(N7)

1 PBP,8(1) P 2
BP,8(1)

1 PBP,8(2) P 2
BP,8(2)

...
...

...

1 PBP,8(N8) P 2
BP,8(N8)




(5.2)

ΘNL =
(
XT
NLXNL

)
XT
NLxMeas (5.3)

where Nr is the number of samples in run r such that the number of samples in run

seven is labeled N7, ΘNL is a vector of the regression parameters for the nonlinear

static model and xMeas is a vector of the measured shock train LE locations for the
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runs under consideration. A similar regression matrix was develped for the φMeas to

xMeas model with PBP replaced by φMeas. After calculating the regression parameters,

the preliminary nonlinear static model for high Reynolds numbers is presented in

Equation (5.4). The data used in the least squares regression for the high Reynolds

number setting is the same data as used to develop the PBP measurement model

presented Chapter IV as Figure 4.13, so, for a high Reynolds number, the static

nonlinearity is the same as well.

uNL(k) = −2.16P 2
BP (k) + 45.14PBP (k)− 218.53 (5.4)

The preliminary study (based on the runs from Chapter IV) was only accom-

plished at the upper Reynolds number level (Re > 7×106/ft). Using the data collected

in runs 5.1-5.2, additional Reynolds numbers were considered as well. The additional

set of static polynomials calculated using the least squares regression detailed in the

previous paragraph are presented as Equation (5.5) for Re ≈ 6.5× 106/ft and Equa-

tion (5.6) for Re ≈ 5× 106/ft. Plots of the data versus least squares regression plots

are presented in Figure 5.3a for the data from runs 4.1-4.8 from Chapter IV as well

as Equation (5.4), Figure 5.3b for the data run 5.1 as well as Equation (5.5), and

Figure 5.3c for the data from run 5.2 as well as Equation (5.6).

uNL(k) = −1.13P 2
BP (k) + 18.42PBP (k)− 56.25 (5.5)

uNL(k) = −2.19P 2
BP (k) + 27.12PBP (k)− 65.47 (5.6)
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(a) Re = 7.58 ×106/ ft
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(b) Re = 6.61 ×106/ ft
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(c) Re = 4.97 ×106/ ft

Figure 5.3: PBP to uNL static models at three Reynolds numbers

5.2 Continuous Linear Model with Static Polynomial Input

The output of the static model is the input to the dynamic model. The first

dynamic model attempted was a continuous one. The first dynamic models considered

were developed at the high Reynolds number setting and included the appropriate

static nonlinear model for the Reynolds number as discussed in Section 5.1 and a

continuous model. The continuous models considered are presented in the first column

of Table 5.2. Initially, continuous model structures were chosen to consider the ability

of a first-order lag filter to model the shock train LE dynamics with the addition of

a nonlinearity (the static model). The overall structure is presented in Figure 5.4. In

this figure, an array of back pressures (or ramp angles depending on the model) is

provided to the static nonlinearity which then is used to calculate an array of uNL

values. The array of uNL values along with an array of xMeas values is provided to

the dynamic model which is then used to calculate the one-step predicted shock train

LE location. This overall structure is similar to a Hammerstein model and is common

to all the models presented in this dissertation. Additional continuous models built

on that first-order lag filter. The Matlabr system identification toolbox was used

to calculate the continuous model parameters (pole, zero, and gain, as applicable)

in each model with the array of uNL values from run 4.10 as the input and the

array of xMeas values from run 4.10 as the output. The run 4.10 uNL values were

calculated by operating on the vector of all the PBP values from the run using the
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Figure 5.4: The Hammerstein model as implemented in this research

static nonlinearity. The toolbox process model optimization algorithm, set to the

simulation mode, was used to develop each model [64]. The eRMS from simulated

results for each model, with the bias offset, are displayed in Table 5.2. The bias

noticed in the simulations is due to two factors: 1) differences between the Reynolds

number the nonlinear model was developed at and the Reynolds number of the run

under study and, 2) steady-state error from the developed dynamic model. A step

input was applied to each of the three models and there was no steady-state error

in the first two models, there was a significant steady-state error in the third model,

though. The step input response for shock train LE commanded to 10 in. is presented

in Figure 5.5. The 10 in. command was used since the dynamic model command,

uNL, was, on average, around 10 in. for run 4.11 as is presented in Figure 5.6. As can

be seen in Figure 5.5, there is approximately a 1 in. steady-state error from the pole-

integrator-zero transfer function. This error was not evident in the other two transfer

functions. The other models did exhibit approximately a 1/4 in. bias, though, which

was due to a slight mismatch between the Reynolds number used to develop the static

nonlinearity and the Reynolds number of run 4.11. The combination of the bias from

the Reynolds number mismatch and the steady-state error contribute to the bias that

was exhibited in the simulation for the third model presented in Table 5.2. Since this

bias is predictable, and does not show in the real-time results due to consistent xMeas

updates, it was subtracted from the eRMS results presented in Table 5.2. Each model
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Figure 5.6: uNL commands for model
three from Table 5.2

presented was developed using the uNL and xMeas data from run 4.10 and validated

using uNL and xMeas data from run 4.11. By adding a zero and an integrator (pole

at the origin on the s plane) to a first-order lag filter, the shock train LE location

can be modeled with an eRMS of nearly 20% of a duct height which is particularly

significant considering the transducers were mounted with a separation of 47.6% of D.

As can be seen in Figure 5.7b, there are several times where the error spikes to values

greater than the distance between transducers, however the maximum error remains

less than D throughout the run. These results confirm the theoretical, perturbation-

theory based work [7, 32] for a shock train with the addition of a simple nonlinear

model and slight changes to the dynamic model. Since the perturbation-theory based

dynamic models had a limited input space composed of small perturbations in back

pressure, the static nonlinear model effectively increased that input space to include

significant changes in back pressure. The results of the measured and the simulated

shock train LE locations are presented in Figure 5.7a and the error is presented in

Figure 5.7b for the third model from Table 5.2.

These results imply that, while a first-order lag model (first two entries in Ta-

ble 5.2) along with a static nonlinearity can be used to model the relationship between

PBP and xs, the modeling errors are on the order of D. In order to more accurately

model the system dynamics, the model order must be increased above the pertur-
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Figure 5.7: Continuous model simulation location and error plot for run 4.11 valida-
tion

bation theory indicated single-pole model. An increase to two poles significantly

decreased the model error. Of particular interest, the two-pole system is moderately

more complex than the theoretical first-order lag filter indicating that the static non-

linearity can be used to enable the use of a simple linear model by enlarging the range

of PBP values in the dynamic model input range from those of small perturbations.

In the next subsection, consideration is given to increasing the order of the system

further while staying with a linear model for the dynamic portion of the assumed

Hammerstein structure.
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Table 5.2: The RMS of the errors from the three continuous linear models

Model zero pole K (gain) Bias, in. eRMS, in.

G = K
s+pole

N/A 55.89 56.1 0.18 2.69

G = K(s+zero)
s+pole

774.0 51.67 6.7× 10−2 0.19 2.38

G = K(s+zero)
s(s+pole)

1.31× 10−3 [0 61.15] 54.79 1.19 0.55

5.3 ARX Models with Static Polynomial Input

The next set of dynamic models considered were based on the ARX structure

presented in Equation (5.1). This structure was chosen to examine the advantages

of additional complexity over the continuous models while remaining linear for the

dynamic portion of the Hammerstein model. Twenty-five different ARX models were

developed by varying the number of input regression parameters, na, and output

regression parameters, nb in Equation (5.1). Of note, the bias experienced in the

previous subsection was also evidenced in the ARX modeling. The bias for each of

the different models was 0.26 in., which is comparable to the error from the Reynolds

number static model mismatch. Although predictable, the bias was not removed

in Table 5.3 although it was removed in Table 5.2. The modeling eRMS values are

presented in Table 5.3.

Table 5.3: The RMS of the errors for the simulation
nb = 1 nb = 2 nb = 3 nb = 4 nb = 5

na = 1 0.56 0.52 0.52 0.54 0.55

na = 2 0.56 0.52 0.53 0.54 0.56

na = 3 0.62 0.57 0.55 0.57 0.58

na = 4 0.61 0.56 0.55 0.55 0.56

na = 5 0.64 0.59 0.58 0.58 0.58
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A probable cause for the homogeneity of the results in Table 5.3 is the large

number of the samples collected to construct the ARX models. The error due to

variation in the parameters from the optimal parameter values, or “variance error” [61]

increases with the number of parameters in a model and can be estimated according

to Equation (5.7).

variance error ∼ σ2 · na + nb
N

(5.7)

An estimate of the variance for a linear model can be calculated from the error vector,

e, the number of regressors, na + nb, and the number of samples, N , according to

Equation (5.8) [61].

σ̂2 =
eTe

N − (na + nb)
(5.8)

In the presented models, the estimated noise variance ranges from 0.13− 0.17 in. and

na +nb ∈ [2, 10] whereas approximately 10,000 samples were used for each model. As

a result, increases in the order of the model can be predicted to result in negligible

changes in the variance error which explains why the eRMS values are approximately

the same as in Table 5.3. The primary concern is then to overcome any error due to

inflexibility of the model structure as a result of not having enough parameters. This

type of error is labeled “bias error” [61]. When choosing the number of parameters

in a model using black-box techniques, one is attempting to balance the bias and the

variance error. Assuming the same number of samples, an increase in the number of

parameters decreases the bias error, but increases the variance errors. As a result of

the desire to decrease the variance error, the number of parameters were kept limited.

This topic is discussed in greater detail in Appendix C.

The eRMS calculations for the na = nb = 2 run show a slight improvement over

the best continuous model calculation, approximately 21% of a duct height versus

22% of D for the continuous model. Additionally, the na = nb = 2 model is one

of the models with the lowest number of parameters. As a result of the previous

considerations, the na = nb = 2 model will be considered in the real-time analysis

section. The na = nb = 2 model equation is presented in Equation (5.9). The
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simulated location results are presented in Figure 5.8a, and the ARX simulation

error is presented in Figure 5.8b for the na = nb = 2 model. As was seen when

considering the continuous models, a simple linear model is capable of accurately

modeling the PBP to xs dynamics when used in conjunction with the static nonlinear

model discussed in Section 5.1. In the next subsection, along with the static nonlinear

model, nonlinear dynamic models will also be considered.

xs(k+ 1) = 0.9644xs(k)− 0.0012xs(k− 1) + 0.0049uNL(k) + 0.0316uNL(k− 1) (5.9)
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Figure 5.8: ARX model simulation location and error plot
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5.4 NARX Models with Static Polynomial Input

The next set of combined models considered in the Hammerstein construct

included the static polynomial developed in Section 5.1, along with a series of NARX

models used for the dynamic model. The NARX model structure is discussed in

Appendix C. The NARX models chosen were all polynomial-based and, therefore,

were linear in the parameters to enable regression parameter optimization using a

least squares regression. The terms considered included xs(k), xs(k − 1), uNL(k),

uNL(k − 1), x2
s(k), x2

s(k − 1), u2
NL(k), u2

NL(k − 1), xs(k)xs(k − 1), uNL(k)uNL(k − 1),

xs(k)uNL(k), xs(k− 1)uNL(k− 1), xs(k)uNL(k− 1), and xs(k− 1)uNL(k) where xs is

the shock train location when not associated with a measurement technique. One of

the downsides to using a polynomial-based NARX model is that the dimensionality

grows exponentially with the consideration of additional parameters if all the potential

parameters are used. To keep the modeling task tractable, only a limited number of

models were constructed by adding a nonlinear term and/or the removing a linear

term to the na = nb = 2 ARX model already chosen in the previous section. As a

result, 54 different model configurations were considered. As in the prior two model

sets (the continuous and the ARX modeling sets), run 4.10 was used to develop each

of the models and run 4.11 was used to validate each model. The simulation was

accomplished by stepping the model forward using actual PBP measurements and

previous simulation measurements (xModel) according to the schematic presented in

Figure 5.1. The NARX models developed and validated, along with the eRMS values,

are presented in Table 5.4. The bias for model 43, the model that was chosen, was

also approximately 1/4 in., in agreement with the previous biases from the Reynolds

number mismatch for the static nonlinearity. As in Table 5.3, the bias is not corrected

for in any of the models presented in Table 5.4.

One of the general principles of system identification, called the “parsimony

principle” [5], is that the simplest model that accurately describes the system dynam-

ics should be chosen. The model chosen for further consideration due to its accuracy

and relative simplicity is model 43 in Table 5.4. The first reason this model was
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selected was the model’s similarity to the chosen ARX model; the only difference

between the na = nb = 2 ARX model and NARX model 43 was a square term which

increases the simulation accuracy by 0.1 in. Secondly, model 43 is one of the more

accurate models amongst the fairly homogenous error values associated with the five-

parameter models. As in the continuous modeling and the ARX modeling subsections,

the PBP to xs dynamics can, again, be fairly accurately modeled by a simple model

when the static nonlinearity is utilized. The results of running a simulation with the

PBP measurements from run 4.11 are presented in Figure 5.9a and the error plot is

presented in Figure 5.9b. The equation for this model, with the regression parame-

ters included, is presented as Equation (5.10). NARX model 43 was considered, along

with the third continuous model and the na = nb = 2 ARX models in the real-time

implementation subsection.

xs(k+1) = 0.9631xs(k)−0.0021xs(k−1)+0.0096uNL(k)−0.0002u2
NL(k)+0.0317uNL(k−1)

(5.10)

Table 5.4: The RMS of NARX simulation errors

Numb. Model Structure eRMS, in.

1 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) 0.5321

2 xs(k + 1) = a xs(k) + b uNL(k) + c uNL(k − 1) 0.4934

3 xs(k + 1) = a xs(k) + b uNL(k) + c x2
s(k) 0.4845

4 xs(k + 1) = a xs(k) + b uNL(k) + c u2
NL(k) 0.4795

5 xs(k + 1) = a xs(k) + b uNL(k) + c x2
s(k − 1) 0.4755

6 xs(k + 1) = a xs(k) + b uNL(k) + c u2
NL(k − 1) 0.6933

7 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k)uNL(k) 0.4826

8 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k)uNL(k − 1) 0.5987

9 xs(k + 1) = a xs(k) + b uNL(k) + c x2
s(k)uNL(k) 0.4806

10 xs(k + 1) = a xs(k) + b uNL(k) + c x2
s(k)uNL(k − 1) 0.5332

Continued on the next page . . .
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Table 5.4 – Continued

Numb. Model Structure eRMS, in.

11 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k)u2
NL(k) 0.4784

12 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1)u2
NL(k) 0.4756

13 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k)u2
NL(k − 1) 0.5925

14 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1)u2
NL(k − 1) 0.5877

15 xs(k + 1) = a xs(k) + b uNL(k) + c x2
s(k − 1)u2

NL(k − 1) 0.5420

16 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + dx2
s(k) 0.4761

17 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + du2
NL(k) 0.4711

18 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k− 1) + dx2
s(k− 1) 0.4722

19 xs(k+1) = a xs(k)+ b uNL(k)+ c xs(k−1)+du2
NL(k−1) 0.6830

20 xs(k+1) = a xs(k)+b uNL(k)+c xs(k−1)+dxs(k)uNL(k) 0.4741

21 xs(k+1) = a xs(k)+b uNL(k)+c xs(k−1)+dxs(k)uNL(k−
1)

0.5874

22 xs(k+1) = a xs(k)+b uNL(k)+c xs(k−1)+dxs(k)2uNL(k) 0.4721

23 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) +

dxs(k)2uNL(k − 1)

0.5231

24 xs(k+1) = a xs(k)+b uNL(k)+c xs(k−1)+dxs(k)uNL(k)2 0.4701

25 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + dxs(k −
1)uNL(k)2

0.4687

26 xs(k+1) = a xs(k)+b uNL(k)+c xs(k−1)+dxs(k)uNL(k−
1)2

0.5814

27 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + dxs(k −
1)uNL(k − 1)2

0.5784

28 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + dxs(k −
1)2uNL(k − 1)2

0.5341

29 xs(k + 1) = a xs(k) + b uNL(k) + c uNL(k − 1) + dx2
s(k) 0.4412

Continued on the next page . . .

84



Table 5.4 – Continued

Numb. Model Structure eRMS, in.

30 xs(k + 1) = a xs(k) + b uNL(k) + c uNL(k − 1) + du2
NL(k) 0.4374

31 xs(k+1) = a xs(k)+ b uNL(k)+ c uNL(k−1)+dx2
s(k−1) 0.4374

32 xs(k+1) = a xs(k)+b uNL(k)+c uNL(k−1)+du2
NL(k−1) 0.4537

33 xs(k + 1) = a xs(k) + b uNL(k) + c uNL(k − 1) +

dxs(k)uNL(k)

0.4401

34 xs(k + 1) = a xs(k) + b uNL(k) + c uNL(k − 1) +

dxs(k)uNL(k − 1)

0.4420

35 xs(k + 1) = a xs(k) + b uNL(k) + c uNL(k − 1) +

dxs(k)2uNL(k)

0.4378

36 xs(k + 1) = a xs(k) + b uNL(k) + c uNL(k − 1) +

dxs(k)2uNL(k − 1)

0.4397

37 xs(k + 1) = a xs(k) + b uNL(k) + c uNL(k − 1) +

dxs(k)uNL(k)2

0.4363

38 xs(k + 1) = a xs(k) + b uNL(k) + c uNL(k − 1) + dxs(k −
1)uNL(k)2

0.4348

39 xs(k + 1) = a xs(k) + b uNL(k) + c uNL(k − 1) +

dxs(k)uNL(k − 1)2

0.4405

40 xs(k + 1) = a xs(k) + b uNL(k) + c uNL(k − 1) + dxs(k −
1)uNL(k − 1)2

0.4389

41 xs(k + 1) = a xs(k) + b uNL(k) + c uNL(k − 1) + dxs(k −
1)2uNL(k − 1)2

0.4361

42 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + d uNL(k −
1) + ex2

s(k)

0.4409

43 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + d uNL(k −
1) + eu2

NL(k)

0.4370

Continued on the next page . . .
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Table 5.4 – Continued

Numb. Model Structure eRMS, in.

44 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + d uNL(k −
1) + ex2

s(k − 1)

0.4374

45 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + d uNL(k −
1) + eu2

NL(k − 1)

0.4417

46 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + d uNL(k −
1) + exs(k)uNL(k)

0.4397

47 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + d uNL(k −
1) + exs(k)uNL(k − 1)

0.4417

48 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + d uNL(k −
1) + exs(k)2uNL(k)

0.4375

49 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + d uNL(k −
1) + exs(k)2uNL(k − 1)

0.4394

50 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + d uNL(k −
1) + exs(k)uNL(k)2

0.4360

51 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + d uNL(k −
1) + exs(k − 1)uNL(k)2

0.4347

52 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + d uNL(k −
1) + exs(k)uNL(k − 1)2

0.4402

53 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + d uNL(k −
1) + exs(k − 1)uNL(k − 1)2

0.4387

54 xs(k + 1) = a xs(k) + b uNL(k) + c xs(k − 1) + d uNL(k −
1) + exs(k − 1)2uNL(k − 1)2

0.4360

86



5 6 7 8 9
0

5

10

15

Elapsed Time, sec.
Sh

oc
k 

Tr
ai

n 
LE

 L
oc

at
io

n,
 in

.

 

 

Measured Loc.
Simulated Loc.

5 6 7 8 9

−2

−1

0

1

2

Er
ro

r, 
in

.

Elapsed Time, sec.

(a) 

(b) 

Figure 5.9: NARX model simulation location and error plot

5.4.1 Real-Time Experimental Results. Finally, the one-step prediction

from the continuous, the ARX, and the NARX models were calculated for each set

of pressure samples collected throughout run 4.12 in Table 4.1. The first step to

implementing the models was to discretize the continuous model. The zero-pole-

integrator continuous model from Table 5.2, was discretized then reformatted to a

one-step format as presented in Equation (5.14). The original continuous transfer

function was

GCont(s) =
54.79 (s+ 1.31× 10−3)

s (s+ 61.15)
=

54.79s+ 0.07177

s2 + 61.15s
(5.11)

87



which was then converted to discrete form using the Matlabr c2d.m command, which

is a Matlabr routine that converts a continuous transfer function into a discrete

transfer function. A 1 kHz sample rate was used in the conversion and discretized

transfer function presented in Equation (5.12) was returned by the routine.

GDisc(z) =
xs(z)

u(z)
=

0.05315z − 0.05315

z2 − 1.941z + 0.9407
(5.12)

Equation 5.12 was cross-multiplied to get

xs(k + 2)− 1.94x(k + 1) + 0.094x(k) = 0.053u(k + 1)− 0.053u(k) (5.13)

which was then rearranged and shifted one time step to gain the one-step format as

presented in Equation (5.14)

xs(k + 1) = 1.94xs(k)− 0.94xs(k − 1) + 0.053 [u(k − 1)− u(k)] . (5.14)

The ARX and NARX models were already in discrete form and were used as is.

The ARX and the NARX equations presented as Equation (5.9) and Equa-

tion (5.10), respectively, the pressure increase shock location measurement algorithm

from Chapter IV, the static nonlinear models from Section 5.1, and the discretized

continuous equation were integrated into the LabVIEWTM routine and tested in run

4.12. Each model produced a predicted shock train LE location for the next sample

based on the appropriate inputs for each model. The real-time recorded shock train

LE location from the measurement, the discretized continuous model, the ARX model,

and the NARX model predicted locations are presented in Figure 5.10a, Figure 5.10b,

and Figure 5.10c, respectively, and the error between the measured location and the

predicted locations from the three models are shown in Figure 5.10d, Figure 5.10e,

and Figure 5.10f, respectively. The eRMS values are presented in Table 5.5.

The real-time results confirm the accuracy of the models constructed in the con-

tinuous, ARX, and NARX modeling subsections. In addition, the real-time results
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Figure 5.10: Continuous, ARX, and NARX modeling real-time results

confirm that the tested ARX and NARX models are more accurate than the continu-

ous models. Also, there was no bias in the real-time runs due to the consistent xMeas

updates. These results demonstrate that there is minimal advantage to including the

square term included in the NARX model. Finally, the real-time results demonstrate

that, when a static nonlinearity is used, a simple, linear model can be used to model

the dynamics of the PBP to xs relationship within an isolator.

Table 5.5: The RMS of the differences between the measured and predicted LE loca-
tion

Model eRMS, in. eRMS, % of D

Discretized Continuous 0.420 16.8%

ARX 0.338 13.5%

NARX 0.309 12.4%
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Finally, a comparison was made to determine the accuracy of the PBP -based

Hammerstein models using the pressure rise shock train location measurement algo-

rithm against the optical measurement. A comparison was accomplished in runs 4.12-

4.14 which were first introduced in Chapter IV and spanned the available Reynolds

numbers. In these runs, the PBP -based Hammerstein model, composed of a static

nonlinear model and an ARX model, for each Reynolds number was implemented in

the LabVIEWTM routine to predict the shock train location, xModel at the next step,

k+1, for each sample set, k. The ARX model was selected for the real-time modeling

across Reynolds numbers due to its low eRMS measure as seen in Table 5.5 and that

the model remained linear. The model-predicted shock train locations along with the

optically measured shock train locations are presented in Figures 5.11a-5.11c and the

errors are presented in Figures 5.11d-5.11f. Additionally, a table of the eRMS values

are presented in Table 5.6 for the three runs under consideration. The average of the

eRMS values from the three runs is 0.45 in., or 18% of D, which is significantly lower

than the distance between transducers of 47.6% of D.

Table 5.6: Back pressure input real-time recorded results

Run Re eRMS, in. eRMS, % of D

4.12 7.20 ×106 /ft 0.438 17.52%

4.13 6.04 ×106 /ft 0.577 23.06%

4.14 4.78 ×106 /ft 0.338 13.52%
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Figure 5.11: Real-time results for static nonlinear and ARX models
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5.4.2 Non-Dimensionalized Model. Finally, the PBP -based model was con-

verted to a model based on the back-pressure to total pressure ratio, PBP/P0. The

non-dimensional model used a new static nonlinearity and the same ARX model pre-

sented as Equation (5.9). As in Section 5.1, a second-order polynomial was used as the

static nonlinear model portion of a Hammerstein-model. The parameters in the static

nonlinear model polynomial were calculated using data from runs 4.1-4.8 and runs

5.1-5.2. As opposed to what was accomplished in Section 5.1, in this case, the PBP/P0

data from all of the runs were combined for one regression matrix. Additionally, a

single vector of the xMeas/D values from the runs was used in the regression calculation.

The non-dimensional static model developed is presented in Equation (5.15) and data

along with a plot of the correlation are presented in Figure 5.12.

uNL(k) = −213.477

(
PBP (k)

P0(k)

)2

+ 161.196
PBP (k)

P0(k)
− 22.972 (5.15)

Figure 5.12: PBP/P0 to uNL/D static model and data at three different Reynolds numbers
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Figure 5.13: Location and error results using the non-dimensionalized model

The non-dimensionalized Hammerstein model using the static nonlinear model

presented as Equation (5.15) and the ARX model presented as Equation (5.9) was

validated with simulations of runs 4.12-4.14. In these simulations, actual pressure

ratio and shock train LE location measurements were used as the inputs and the

model outputs were compared to optical measurements for the error plots. The shock

train locations as predicted by the non-dimensionalized Hammerstein model are pre-

sented in Figures 5.13a-5.13c and the errors are presented in Figures 5.13d-5.13f.

Additionally, the eRMS values from the runs are presented in Table 5.7. As can be

seen by comparing Table 5.6 to Table 5.7, using the pressure ratio as the input to the

Hammerstein model can be more accurate across Reynolds numbers. This is a result

of slightly different Reynolds numbers in the evaluation runs in comparison to those

from the runs used to develop the individual, Reynolds number tuned, static models.

93



Table 5.7: Non-dimensionalized pressure ratio results

Run Re eRMS, in. eRMS, % of D

4.12 7.20 ×106 /ft 0.308 12.30%

4.13 6.04 ×106 /ft 0.389 15.55%

4.14 4.78 ×106 /ft 0.380 15.20%

Since the primary way to change the Reynolds number in the AFIT test section is

to change the total pressure, differences in the Reynolds number are corrected for by

using PBP/P0 in the static model.

5.4.3 Increased Transducer Spacing. The next consideration made was to

consider the effect of using fewer transducers to develop the model and measure the

shock train LE location. Three simulations were accomplished to compare ARX re-

sults developed with fewer transducers to optical data from runs 5.21-5.23. The same

previously developed static nonlinearities (Equations (5.4)-(5.6)) were used in the sim-

ulation along with a new ARX model developed with the data from runs 5.13-5.16.

The ARX model was developed by first calculating the shock train LE location using

the decreased set of transducers and then including the new location measurements,

along with the uNL measurements from the static nonlinearity in a linear regression.

The new model was then used to simulate the one-step prediction as if it had been

implemented in the LabVIEWTM routine. The one-step prediction eRMS values with

the 95% of D transducer spacing is presented in Table 5.8 and the results when the

transducers are mounted at 47.6% of D are presented in Table 5.9. As could be ex-

pected, the error increases as the distance between the transducers is increased. The

reason for this increase is that the measurement algorithm is less accurate because the

measurement algorithm is based on interpolation between transducers as is presented

in Figure 4.3. When the distance between the transducers is increased, the accuracy

of the LE location estimate is decreased due to the difference between the assumed

linear relationship between pressure measurements amongst transducers used in in-

terpolation and the actual curved increase in pressure measurement. The eRMS values
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were less than 23% of D when the transducers were mounted with a spacing of 95%

of D and 17% of D with a 47.6% of D spacing indicating that the ARX model could

be implemented with increased transducer spacing. Plots of the location predictions

from the ARX model and the shadowgraph measured location are presented in Fig-

ures 5.14a-5.14c and the errors are presented in Figures 5.14d-5.14f for the increase

transducer spacing simulations.

Table 5.8: ARX modeling errors, transducers at 95% of D

Run eRMS, in. eRMS, % of D

5.21 0.485 19.38%

5.22 0.564 22.54%

5.23 0.347 13.87%

Table 5.9: ARX modeling errors, transducers at 47.6% of D

Run eRMS, in. eRMS, % of D

5.21 0.317 14.33%

5.22 0.310 16.88%

5.23 0.330 12.87%
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Figure 5.14: ARX modeling simulation location and error plots with increased trans-
ducer spacing

5.5 Ramp Angle to Location Modeling

After the conclusion of the PBP to xs modeling, efforts were applied to de-

veloping a dynamic model to relate the ramp angle, φMeas, to the shock train LE

location, xs. The same Hammerstein-like structure with an na = nb = 2 ARX model

was assumed for the φMeas to xs dynamic model with the one change being that the

three-parameter static nonlinear model was replaced by a four-parameter polynomial

due to a better fit to experimental data. The modeling efforts for this portion of the

research followed the same procedure of developing the static models first and then

developing the dynamic models.

5.5.1 Static Nonlinear Models. The modeling started by accomplishing

six different runs (runs 5.3-5.8) in which the ramp was raised from 9 to 20 degrees in
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increments of 1/2 deg. twice in the same run. A plot of the ramp input (φMeas) and the

shock train location (xMeas) for run 5.3 is presented in Figure 5.15a and Figure 5.15b,

respectively. The average measured shock train locations using xMeas, after the shock
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(b) Run 5.3 xMeas Location

Figure 5.15: Multiple step input and xMeas output plots for run 5.3

had started oscillating around its mean position at that ramp level, were then noted

for each 1/2 deg. ramp location. As a result, data was collected to relate φMeas to

xMeas at distinct φMeas settings and at three Reynolds number settings. The sets of

φMeas vs xMeas data were then used, in a similar manner to the PBP to xMeas data

in Section 5.1 to develop a static polynomial model for a single Reynolds number

setting. The static polynomial models developed for the three different Reynolds

number settings are presented in Equations (5.16)-(5.18) and are plotted, along with

the data used to generate the static models in Figures 5.16a-5.16c.

Re = 4.47× 106/ft :

uNL(k) = −0.0021φ3
Meas(k)− 0.0613φ2

Meas(k) + 1.4294φMeas(k) + 13.067 (5.16)

Re = 5.97× 106/ft :

uNL(k) = 0.0129φ3
Meas(k)− 0.8111φ2

Meas(k) + 13.8224φMeas(k)− 52.6362 (5.17)

Re = 7.24× 106/ft :

uNL(k) = −0.0031φ3
Meas(k)− 0.0762φ2

Meas(k) + 2.9557φMeas(k) + 0.1990 (5.18)
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Figure 5.16: Real-time results for static nonlinear and ARX models

Additionally, the data from all the runs were combined to develop a single static

model that, after testing, was shown to span the entire range of Reynolds numbers

with a trade-off in accuracy that could be overcome with the control algorithm. The

results of the control algorithm will be presented in Chapter VI. The combined static

nonlinearity is presented in Equation (5.19) and all static ramp-based polynomial

models are presented together in Figure 5.17. The combined model is listed as the

“Control Nonlinearity” in Figure 5.17 since this was the polynomial used in the control

algorithm developed in Chapter VI.

uNL(k) = 0.0152φ3
Meas(k)− 0.8990φ2

Meas(k) + 14.9685φMeas(k)− 58.0210 (5.19)

5.5.2 Static Nonlinearity Inversion. In addition to the static nonlinearity,

the inverse of the static nonlinearity was also needed for implementation in the control

algorithm. The inversion was developed using the same φRA and xMeas data as was

used to develop the static nonlinearities presented in Subsection 5.5.1, except in this

case, the xMeas data was used as the inputs and the φRA data was used as the output.

The polynomial equations developed as the inverse of the Hammerstein model static

nonlinear model are presented in Equations (5.20)-(5.22). Additionally, as in the

previous subsection, an inverse static nonlinearity was developed by combining the
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Figure 5.17: Plot of the measured ramp angle to dynamic model input nonlinearities

data from runs 5.3-5.8. This inverse nonlinearity was used in the control algorithm

at all Reynolds numbers available in the test section. The equation for the combined

static nonlinearity inversion is presented in Equation (5.23) and a plot of all the

inversions is presented in Figure 5.18.

Re = 4.47× 106/ft :

φMeas(k) = −0.0013u3
NL(k)0.0230u2

NL(k)− 0.4683uNL(k)20.4456 (5.20)

Re = 5.97× 106/ft :

φMeas(k) = −0.0019u3
NL(k)0.0426u2

NL(k)− 0.5902uNL(k) + 21.1414 (5.21)

Re = 7.24× 106/ft :

φMeas(k) = −0.0019u3
NL(k) + 0.0426u2

NL(k)− 0.5993uNL(k)21.8838 (5.22)

Combined inversion:

φMeas(k) = −0.0010u3
NL(k) + 0.0150u2

NL(k)− 0.3667uNL(k) + 20.6700 (5.23)
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Figure 5.18: Plot of the dynamic model input to measured ramp angle nonlinearity
inversions

5.5.3 Dynamic Model Development. Following the development of the static

model, a dynamic model was developed for the relationship between uNL, which was

the static nonlinearity output from the ramp angle in this case, and xModel. The same

na = nb = 2 ARX model structure was assumed for the dynamics in this portion of

the research. Runs 5.9-5.20 were used to develop and validate the various models at

different Reynolds numbers. As an example, for the Low Reynolds number, the data

for runs 5.9-5.11 was combined for times when the ramp was deployed and then the

model was validated using the data from run 5.12. Similar groupings of development

versus evaluation data sets were accomplished to develop mid-range and a high-range

models. As a consideration of the input ramp angles used to develop the data, a

five-level APRBS algorithm was used. Ramp angle PSDs for the different Reynolds

number sets of runs are presented in Figures 5.19a-5.19c. As can be noted, there is

a significant drop at 10 Hz due to the ramp bandwidth and the repeating nature of

the APRBS algorithm. As detailed in Appendix D, the APRBS algorithm is built on

clock math, thus repeating itself. This repeating nature is evidenced in the PSDs by

the repeated drops and rises in the plots.
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Figure 5.19: Ramp input PSD plots for runs 5.9-5.20

The uNL(k) calculations from the outputs of the static polynomials operating on

each φMeas(k) were then used as the inputs and the xMeas(k) values as the outputs in

another linear regression algorithm to calculate the dynamic models at each Reynolds

number setting. The developed models are presented in Equations (5.24)-(5.26).

Re = 4.49× 106/ft

xModel(k + 1) = 0.6264xModel(k) + 0.3461xModel(k − 1) + 0.2073uNL(k)− 0.1804uNL(k − 1)

(5.24)

Re = 5.67× 106/ft

xModel(k + 1) = 0.6261xModel(k) + 0.3469xModel(k − 1) + 0.1609uNL(k)− 0.1335uNL(k − 1)

(5.25)

Re = 7.08× 106/ft

xModel(k + 1) = 0.6725xModel(k) + 0.3018xModel(k − 1) + 0.2623uNL(k)− 0.2361uNL(k − 1)

(5.26)

Simulations were accomplished using the combined static nonlinearity, Equation (5.23),

and the dynamic model appropriate to the evaluation run’s Reynolds number. The

runs that were simulated for comparison were runs 5.12, 5.16, and 5.20 to span the

available Reynolds number range. Plots of the recorded and simulated location data
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Figure 5.20: φMeas-based Hammerstein model simulation results

are presented in Figures 5.20a-5.20c and the errors are presented in Figures 5.20d-

5.20f. Finally, a table of the simulation results is presented in Table 5.10. As can be

noted, although the run errors increase as the Reynolds number decreases, even at

the worst case, the modeling error is still less than the 47.6% of D distance between

the pressure transducers.

Table 5.10: Ramp input simulation results

Run Re eRMS, in. eRMS, % of D

5.12 4.49 ×106 /ft 0.8263 33.05

5.20 5.85 ×106 /ft 0.7874 31.50

5.16 7.11 ×106 /ft 0.7543 30.17

Next, each of the Reynolds number-specific Hammerstein models were imple-

mented in the LabVIEWTM routine. The shock train LE location from the model,
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Figure 5.21: φMeas-based Hammerstein model real-time results

xModel was calculated and recorded with each sample set, k, and compared to optical

data, xOptic. The xModel and xOptic comparison plots are presented in Figures 5.21a-

5.21c and the error plots are presented in Figures 5.21c-5.21f. The accuracy compar-

ison using the eRMS value, as before, is presented in Table 5.11.

Table 5.11: Ramp input real-time recorded results

Run Re eRMS, in. eRMS, % of D

5.21 4.49 ×106/ft 0.3076 12.30

5.22 5.67 ×106/ft 0.2521 10.09

5.23 7.08 ×106/ft 0.2529 10.11
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5.6 Modeling Conclusion

In order to model the shock train LE location within the test section, two

Hammerstein models were developed. The models developed proved to be significantly

more accurate than was the goal with eRMS values significantly less than D. The first

set of Hammerstein models used the back pressure, PBP , as the input and were tailored

to the appropriate Reynolds number for a run. The second set of Hammerstein models

used the ramp angle, φMeas, as the input and were also tailored to the appropriate

Reynolds number for a run. Each set of Hammerstein models were validated by

comparing the one-step predicted shock train location, xModel, against the optically

measured shock train location, xOptic. The results demonstrated accuracies less than

24% of D for the PBP -based models (less than 16% for PBP/P0-based models) and

less than 13% for the φMeas-based models. Each final dynamic model successfully

predicted the shock train LE location to within the distance between transducers,

47.6% of D.
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VI. Control

After completing the development of a shock train measurement algorithm and a

dynamic model of the system, the research then focused on the development of an

automatic controller to place the shock train leading edge (LE) at a desired location,

xDes, within the test section. As noted in Chapter I, the shock train in a scramjet

isolator tends to oscillate up to a duct height, D, on its own, so the goal of this

research is to develop a controller that can place the shock train LE with a steady-

state error of less than D. Since the shock train does not reach a steady-state where

it no longer oscillates, the term steady-state is used to mean the state of the system

after the initial transients from a commanded change in ramp angle have settled. The

steady-state goal was for the eRMS, as defined by Equation. (6.1) and Equation. (6.2)

to be less than D

e = xDes − xMeas (6.1)

eRMS =

√
eTe

N
(6.2)

where N is the number of samples, xDes is a N sample vector of the desired shock

train locations and the other variables are previously defined.

A schematic of the overall system with the controller is presented in Figure 6.1.

The command to change the shock train LE location is originated by the user in

a change to the xDes position. This xDes value is then compared to the measured

shock train location, xMeas to generate an error term, e which is then fed into an

integral controller which will be discussed in Section 6.3. The output from the integral

controller, uI , is then converted to an angle, φI , using the inverse static nonlinearity

developed in Chapter V (z−18) and compared to the input from the deadbeat controller

discussed in Section 6.1, φDB for the ramp command, φCtl. φCtl is then fed into the

ramp and a 45 cycle lag block, z−45 before being processed by the observer. The

z−45 operation was used to accommodate the transport lag noticed in the ramp bode

plot from Chapter III as well as LabVIEWTM processing time. The 45 cycle lag was
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developed after noting the lag between φCtl and φMeas changes was approximately

0.045 sec. and considering that the sampling frequency used was 1000 Hz, so there

was 0.001 sec. between samples. The φMeas value then fed into the test section where

the ramp changed the flow within the test section. The vector of static pressures, Ps, is

then sampled and the measured shock train location, xMeas is calculated. Additionally,

since there is no observability into the states, a full-state observer was implemented.

This observer design will be discussed in Section 6.2. The four-state (two-states for

the shock train location and two-states for the ramp angle) output from the observer

was then operated on by the deadbeat gain, KDB, to produce the deadbeat ramp

angle, φDB.

xDes(k) +

−
Test Section

φCtl(k)e(k)

Measurement 
Algorithm

Ps(t)

Ps(k)

∆t

Full-State 
Observer

xMeas(k)
KDB

Integral 
Controller

Nonlinearity 
Inversion

Nonlinearity 
Inversion

uI(k) φI(k)

φDB(k)

uDB(k)


 x̂s(k)

Φ̂r(k)




Ramp
φMeas(k)

z−45

φCtl(k − 45)
xMeas(k)

+

−

Figure 6.1: Schematic of the overall system and control algorithm
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6.1 Deadbeat Controller Design

The desire for this controller is to move the shock train to the desired location

as quickly as possible without an excessive (more than 20% of commanded change in

location) amount of overshoot. As a result, a deadbeat controller was chosen for the

inner loop in the control algorithm and an integral controller was used to attenuate

the overshoot endemic to a deadbeat controller. Proportional and LQR controllers

were also considered, but a significant amount of steady-state error was noted in the

proportional controller and the LQR reaction times were slower than desired. In a

deadbeat controller, the deadbeat response is commanded by changing K so that all

the eigenvalues of the [A−BK] closed-loop plant matrix are zero [65]. The [A−BK]

matrix is the matrix created by adding a feedback controller to the standard state-

space form dynamics and measurement equations presented in Equation (6.3) and

Equation (6.4), respectively, where A, B, and C are matrices of the appropriate size,

x is a vector of states, and y is the output. Additionally, a schematic of the state-space

form transfer function is presented in Figure 6.2a.

x(k + 1) = Ax(k) +Bu(k) (6.3)

y(k) = Cx(k) (6.4)

Next, a feedback controller is wrapped around the system as is displayed in Figure 6.2b

and the terms are combined as is shown in Figure 6.2c. The result is that the original

“A” matrix is now composed of “[A− BK]” as is presented in Equation 6.5, so, the

controller is now changing the dynamics of the system by changing the eigenvalues of

the “A” matrix to those of “[A−BK]”.

x(k + 1) = (A−BK)x(k) +Bu(k) (6.5)

y(k) = Cx(k) (6.6)

As a result of placing all the [A−BK] eigenvalues at zero, disturbances are driven to

107



B z−1I

A

x(k + 1) x(k)

C

y(k)+

+

u(k)

(a) Start with a state-space form transfer function:

B z−1I

A

K
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(b) Add a feedback control loop:

A − BK

z−1I

x(k + 1) x(k)

C

y(k)

B

+

+

u(k)

(c) Combine terms:

Figure 6.2: Illustration of a generic state-space model with a feedback controller

the plant null space in a finite number of samples and the system will have a minimal

settling time [66].

The deadbeat controller gains were calculated by first placing the ramp transfer

function and the ARX portion of the system Hammerstein model into state-space

form. The ramp transfer function, developed from the ramp Bode plot in Chapter III

is presented in Equation (6.7).

GRamp =
0.012204(z + 0.8959)

(z − 0.8479)2
z−18 =

0.012204z + 0.0109

z2 − 1.6958z + 0.7189
z−18 (6.7)

GRamp can then be placed into a controllable canonical state-space form without

the delay term, z−18, as is presented in Equation (6.8) and the ramp measurement
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equation is presented in Equation (6.9).

Φr(k + 1) =


 0 1

−0.7189 1.6958


Φr(k) +


 0

1


φCtl(k) (6.8)

φMeas(k) =
[

0.0109 0.012204
]

Φr(k) (6.9)

The matrices from the ramp state-space and measurement equations are then labeled

according to Equations (6.10-6.12).

Ar ,


 0 1

−0.7189 1.6958


 (6.10)

Br ,


 0

1


 (6.11)

Cr ,
[

0.0109 0.012204
]

(6.12)

The state-space and measurement equations for the ARX model, developed in

Chapter V, are then presented in Equation (6.13) and Equation (6.14), respectively.

Since the nonlinearity inversion adequately inverts the nonlinear model for φMeas

and uNL values in which the shock train LE remains within the test section, the

nonlinearity is not considered during the deadbeat control gain calculation. The

nonlinear model will be included when considering the integral gain, KI .

xs(k + 1) =


 0 1

0.3018 0.6725


xs(k) +


 0

1


φMeas(k) (6.13)

xMeas(k) =
[
−0.2361 0.2623

]
xs(k) (6.14)
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The matrices from the system state-space and measurement equations are then rela-

beled as presented in Equations (6.15)-(6.17).

As ,


 0 1

0.3018 0.6725


 (6.15)

Bs ,


 0

1


 (6.16)

Cs ,
[
−0.2361 0.2623

]
(6.17)

Now, after substituting Equation (6.9) into Equation (6.13) as well as relabeling the

matrices, the ARX state-space dynamics equation is

xs(k + 1) = Asxs(k) +BsCrΦr(k). (6.18)

The ramp and ARX state-space equations can now be combined to form the open-

loop system going from φCtl to xMeas. The open-loop state-space equation is pre-

sented in Equation (6.19) and the open-loop measurement equation is presented in

Equation (6.20).





xs(k + 1)

Φr(k + 1)





=



As BsCr

0 Ar








xs(k)

Φr(k)





+




0

Br


φCtl(k) (6.19)

xMeas(k) =
[
Cs 0

]




xs(k)

Φr(k)





(6.20)
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The matrices of the open-loop system are then relabeled to

AOL ,



As BsCr

0 Ar


 (6.21)

BOL ,




0

Br


 (6.22)

COL ,
[
Cs 0

]
(6.23)

so, the open-loop state-space dynamics and measurement equations are





xs(k + 1)

Φr(k + 1)





= AOL





xs(k)

Φr(k)





+BOLφCtl(k) (6.24)

xMeas(k) = COL





xs(k)

Φr(k)




. (6.25)

To close the loop, now consider that

φCtl(k) = φI(k) + φDB(k)

= φI(k)−KDB





xs(k)

Φr(k)





(6.26)

when the observer is not considered for the controller gain determination and KDB

is the deadbeat controller gain where the desired controller without the nonlinearity

inversion is

φDB = −KDB





xs(k)

Φr(k)




. (6.27)

The observer was developed separately and will be presented in Section 6.2. After

substituting Equation (6.27) into Equation (6.24) and collecting terms, the closed-loop
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equation for the deadbeat controlled inner loop, without the observer, from Figure 6.1

is





xs(k + 1)

Φr(k + 1)





= [AOL −BOLKDB]





xs(k)

Φr(k)





+BOLφI(k) (6.28)

xMeas(k) = COL





xs(k)

Φr(k)




. (6.29)

Since the desired response is the deadbeat response, the eigenvalues of AOL −
BOLKDB were placed at the z-plane origin

(
i.e. z =

[
0 0 0 0

])
, so the deadbeat

controller gains are

KDB =
{
KDB,s KDB,r

}

=
[

10.6113 30.3846 −0.3357 2.3683
]
. (6.30)

6.2 Observer Design

The only measurement available for use in the feedback controller in Equa-

tion (6.27) is the shock train LE location from the measurement algorithm, xMeas and

the measured ramp angle, φMeas. As a result, a full-state observer was implemented

to provide estimates of the values of the states at each k during a run. A schematic

of the observer is presented in Figure 6.3. The inputs to the observer are φMeas(k),

xMeas(k), and the commanded ramp angle 45 cycles prior to k, φCtl(k − 45). The

45 cycle lag was integrated into the algorithm due to the transport lag noted first

while considering the actuator in Section 3.3 and then when accomplishing step in-

puts which will be discussed in Section 6.3. The first transport lag was noted when the

Bode plot of the ramp response was analyzed. The full control LabVIEWTM routine

was not used to collect the data for the ramp analysis, though, so extra lags from

calculations were not in the data. During step input runs using the full shock train

control LabVIEWTM code, it was noticed that the transport lag was greater than
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Φ̂r(k)Φ̂r(k + 1)

x̂s(k)

Figure 6.3: Schematic of the implemented full-state observer

just the ramp lag. As a result, the lag used for the observer was increased from

18 cycles to 45 cycles to correspond to the combined lag from both the ramp and

LabVIEWTM calculation. Additionally, note that the static nonlinearity is integrated

into the observer design for the estimation of the states related to the shock train

location, x̂s. Finally, since both the shock train LE location ARX model and the

model of the ramp are 2-state models, the estimated states for the shock train, x̂s

and for the ramp angle, Φ̂r have two states, so the output from the observer is all

four states. A state-space equation for the observer is presented in Equation (6.31)

where P [·] implies the nonlinearity operating on φMeas(k).





x̂s(k + 1)

Φ̂r(k + 1)





=



As − LsCs 0

0 Ar − LrCr








x̂s(k)

Φ̂r(k)





+ ...



Ls Bs 0

0 0 Lr








xMeas(k)

P [φMeas(k)]

φMeas(k)





+




0

Br


 z−45[φCtl(k)] (6.31)

Finally, the deadbeat response is desired, again, in the observer, so the observer

poles were placed at z = [0 0 0 0]. The calculated observer gains are presented in
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Equation (6.32)

L =





Ls

Lr





=




35.6822

34.6819

60.3764

85.0293




(6.32)

6.3 Integral Control

In order to account for fit errors between the Hammerstein model and the ac-

tual system as well as to slow the system (since a deadbeat controller was selected for

the observer and the pole placement), an integral controller was added to the control

algorithm. A schematic of the integral controller is presented in Figure 6.4. The inte-

z−1

KI

ν(k)e(k) uI(k)

Figure 6.4: Schematic of the integral controller

gral control gain, KI was selected through experimentation. Step inputs commanding

xDes from 5 to 15 in. were applied to the system while varying KI in runs 6.1 through

6.3. The desired specification for a step response was an overshoot, Mp, less than

20%. The response at three different KI settings is presented in Table 6.1 as well as

in Figures 6.5a-6.5c. The specification was met by placing setting KI = 0.0075, so

this integral gain value was used for all controlled runs.

Table 6.1: Test section operating configurations

Run Re, /ft KI tlag, sec. Mp

6.1 7.04× 106 0.0050 0.044 Overdamped

6.2 7.05× 106 0.0075 0.044 1.89 in., 18.9%

6.3 7.05× 106 0.0100 0.044 2.03 in., 20.3%
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(c) Run 6.1, KI = 0.0100

Figure 6.5: Step responses with varying KI values

6.4 Controller Optical vs Measurement Algorithm Comparison

The measurement algorithm performance was verified with all the measurement

and control algorithms implemented into the LabVIEWTM routine before the con-

troller performance was evaluated. A comparison was made between the measured

location using the measurement algorithm, xMeas, to the shock train LE location from

the shadowgraph, xOptic, at various Reynolds numbers throughout the test section.

Since xOptic was compared to xMeas and not xDes, the measurement algorithm perfor-

mance only affects control performance. Six different runs were used to collect the

data for this subsection. In each run, the ramp is raised to an initial position (out

of the shadowgraph field of view) to develop the shock train, and then raised to two

additional positions within the shadowgraph field of view. The six runs considered

include three runs at each end of the Reynolds number range available in this test sec-

tion. Additionally, a range of shock train LE locations (xDes ∈ [3.75, 6.75, . . . , 15.75])

was considered at each Reynolds number setting. The results from the testing are

placed in Table 6.2. The xMeas data was collected at 1kHz and then downsampled

to the shadowgraph data rate of 500 FPS for comparison. Additionally, plots of the

results are placed in Figures 6.6a-6.6f and Figures 6.7a-6.7f. In these figures, the top

row of plots displays the actual measurements and the bottom row displays the error,

defined as the difference between xMeas and xOptic.

115



As can be noted from the location plots, the xMeas location was validated

throughout the test section for the range of available Reynolds numbers to within

30% of a duct height. Additionally, when in the center portion of the test section, the

measurement algorithm is more accurate. The algorithm does have difficulty in the

far upstream portion of the test section, though. When commanded to xDes = 3.75

in. there is some discrepancy between xMeas and xOptic. A likely reason for this dis-

crepancy is the significant pressure increase in the test section within the first 5 in.

downstream from the nozzle as discussed in Chapter III. The measurement algorithm

relies on interpolation amongst the pressure transducer readings to locate xMeas. The

pressure increase in the upstream portion of the test section breaks the implicit as-

sumption of this technique of a monotonically increasing static wall pressure along the

test section, thus resulting in significant errors in location measurements in the far

upstream portion of the test section. Throughout the remainder of the test section,

the measurement algorithm is accurate to less than 20% of a duct height although

the pressure transducers are separated by 47.6% of a duct height.

Table 6.2: Optical measurement versus measurement algorithm results

Run xDes, in. Re, /ft µ(|e|), in. σ(e), in eRMS, in. eRMS, % of D

6.4 3.75, 6.75 4.58× 106 0.6452 0.3751 0.7456 29.83

6.5 9.75, 12.75 4.54× 106 0.2285 0.2476 0.2939 11.76

6.6 12.75, 15.75 4.53× 106 0.3914 0.4569 0.4933 19.73

6.7 3.75, 6.75 7.16× 106 0.5787 0.2827 0.6433 25.73

6.8 9.75, 12.75 7.04× 106 0.3214 0.3275 0.4015 16.05

6.9 12.75, 15.75 7.05× 106 0.3517 0.4315 0.4444 17.78

116



6 7 8 9 10
−3

−2

−1

0

1

2

3

Elapsed Time, sec.

Er
ro

r, 
in

.

6 7 8 9
−3

−2

−1

0

1

2

3

Elapsed Time, sec.

Er
ro

r, 
in

.

5 6 7
−3

−2

−1

0

1

2

3

Elapsed Time, sec.

Er
ro

r, 
in

.

6 7 8 9 10
0

5

10

15

Elapsed Time, sec.

LE
 L

oc
at

io
n,

 in
.

 

 
xOptic
xMeas

6 7 8 9
0

5

10

15

Elapsed Time, sec.

LE
 L

oc
at

io
n,

 in
.

 

 

xOptic
xMeas

5 6 7
0

5

10

15

Elapsed Time, sec.

LE
 L

oc
at

io
n,

 in
.

 

 

xOptic
xMeas

(a) Re = 4.58 x 106 /ft (b) Re = 4.54 x 106 /ft (c) Re = 4.53 x 106 /ft 

(d) Re = 4.58 x 106 /ft (e) Re = 4.54 x 106 /ft (f) Re = 4.53 x 106 /ft 

Figure 6.6: Measurement algorithm vs optical results for runs 6.4-6.6
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Figure 6.7: Measurement algorithm vs optical results for runs 6.7-6.9
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6.5 Controller Performance

The next consideration is the ability to direct the shock train LE location

throughout the test section. Three runs, presented in Table 6.3, were accomplished to

display this capability. Additionally, the location plots are presented in Figures 6.8a-

6.8c and the error plots are presented in Figures 6.8d-6.8f. Plots of the commanded

ramp angle, φCtl versus the measured ramp angle, φMeas are presented in Figures 6.9a-

6.9c and the error, defined as φCtl−φMeas is presented in Figures 6.9d-6.9f. As can be

seen in these ramp angle plots, there is an approximately 0.2 deg. error between the

commanded and the measured ramp angle. In these runs, the shock train location was

controlled by changing the xDes value such that xDes = [4, 8, 6, 12, 10, 16, 14, 18] in.

and three Reynolds numbers were considered.

As can be seen, the controller is able to place the shock train LE at a desired

location throughout the test section to within 1/2 of D at all three Reynolds number

settings. The overall goal of the control efforts was to place the shock train within

one D. The effects of the transport lag in the system can be observed in the delay

between changes in xDes and φMeas as presented in Figure 6.10. Although the lag

is evident, due to the consideration of the transport lag in the controller design as

well as the controller’s robustness, the controller is still capable of holding the shock

train LE at a desired location. Additionally, the controller is able to control around

a approximately 0.2 deg. ramp deflection error. The controller is capable of actively

controlling the shock train location to overcome temporal (transport lag) and ramp

measurement errors to within 1/2 of D.

Table 6.3: xDes vs xMeas results throughout the test section

Run Re, /ft µ(|e|), in. σ(e), in eRMS, in. eRMS, % of D

6.10 4.54× 106 0.6504 1.0559 1.0604 42.41

6.11 5.77× 106 0.5802 0.9687 0.9744 38.98

6.12 7.01× 106 0.6845 1.1301 1.1390 45.56
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Figure 6.8: Desired vs measured location and error results for runs 6.10-6.12
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Figure 6.9: Controlled vs measured ramp angle and error results for runs 6.10-6.12
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Figure 6.10: Run 6.12 xDes and φMeas with the time zoomed-in at two places

122



6.6 Observer Performance

The observer is capable of accurately estimating the shock train LE location,

x̂Meas(k) and the ramp angle, φ̂Meas(k) throughout a run at different Reynolds num-

bers. The observer residuals for each run are defined as presented in Equation (6.33)

and Equation (6.34)

xResid(k) , xMeas(k)− x̂Meas(k) = xMeas(k)− Csx̂s(k) (6.33)

φResid(k) , φMeas(k)− φ̂Meas(k) = φMeas(k)− CrΦ̂r(k) (6.34)

where xResid is the residual related to the x measurement and φResid is the residual

related to the φ measurement. Plots of xMeas versus x̂Meas along with the error

are presented in Figures 6.11a-6.11f and φMeas versus φ̂Meas along with the ramp

estimation error for runs 6.10-6.12 are presented in Figures 6.12a-6.12f. As can be

seen in the plots, the observer provides location estimates within eRMS values ±10%

of D and ramp estimates well within the 0.2 deg ramp angle measurement error.

Additionally, neither estimate significantly decreases in accuracy during commanded

changes in the shock train LE location. Finally, PSDs of the measurement values and

the residuals are presented in Figures 6.13a-6.13f. As can be seen in the LE location

PSDs, the residuals are nearly white for frequencies above approximately 10 Hz. For

the ramp observer PSDs, the modeling error can be seen to be quite low in frequencies

less than 500 Hz. The spike at 50 Hz is due to LabVIEWTM sampling and will be

discussed in the next paragraph. Since the results seen in the time-based and the

frequency-based plots were so accurate, the states that led to produce the outputs

must have been accurate as well.

Table 6.4: xMeas vs xEst results throughout the test section at three Reynolds numbers

Run Re, /ft µ(|e|), in. σ(e), in eRMS, in. eRMS, % of D

6.10 4.54× 106 0.1052 0.1201 0.1541 6.166

6.11 5.77× 106 0.1053 0.1231 0.1342 5.368

6.12 7.01× 106 0.0938 0.1212 0.1222 4.886

123



Table 6.5: φMeas vs φEst results throughout the test section at three Reynolds numbers

Run Re, /ft µ(|e|), in. σ(e), in eRMS, deg.

6.10 4.54× 106 0.0049 0.0048 0.0062

6.11 5.77× 106 0.0050 0.0051 0.0064

6.12 7.01× 106 0.0049 0.0046 0.0061
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Figure 6.11: Measured vs estimated shock train location for runs 6.10-6.12

A spike can be seen at 50 Hz in the ramp angle residual PSD plots presented as

Figures 6.13d-6.13f. These spikes are due to the LabVIEWTM implementation. In the

LabVIEWTM routine, first, a set of samples, consisting of 20 pressure measurements,

temperature measurements, and ramp measurements were collected at 1000 Hz. Then

the routine calculated 20 control inputs which were sent to the ramp actuator com-

puter. While the ramp actuator is responding to the previous 20 control inputs, the

LabVIEWTM routine collects another set of samples and begins control calculations.
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Figure 6.12: Measured vs estimated ramp angle for runs 6.10-6.12

As a result of sampling and sending control inputs in sets, the ramp command and

the ramp measurement are out of synchronization. This synchronization error is then

seen in the observer residuals as a spike corresponding to the frequency of a set of

data being sent to the actuator. In this case, a set of commands is sent to the actuator

with a frequency of 50 Hz as can be predicted using Equation (6.35).

1 Set

20 Samples

1000 Samples

1 Second
= 50

Set

Second
= 50 Hz (6.35)

The number of samples can be varied by the user. Several runs, presented in

Table 6.6, were accomplished in which the number of samples collected per a set were

varied while the sampling frequency remained at 1000 Hz. PSD plots of the residuals

for runs 6.13-6.16 are presented in Figure 6.14a and Figure 6.14b. As can be seen in
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Figure 6.13: PSDs of measured values and observer residuals for runs 6.10-6.12

these plots, there are spikes at the expected frequency corresponding to when a set

of commands is sent to the actuator and then repeated until overtaken by noise.

Table 6.6: φMeas vs φEst results throughout the test section at three Reynolds numbers

Run Samples per Set Sampling Frequency, Hz Spike Frequency, Hz

6.13 20 1000 50

6.14 30 1000 33.33

6.15 40 1000 25

6.16 60 1000 16.67
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Figure 6.14: PSDs with varied number of samples per a set
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6.7 Disturbance Rejection

The final set of tests for the control algorithm were to consider its ability to reject

disturbances. Two types of disturbances were considered, in the first, a transducer

hole was opened by hand in the test section during the run. The second disturbance

was a decrease in the total pressure, P0, during a run. The controller was able to

bring the shock train back to the desired location with the first disturbance and was

capable of holding the shock at the desired location when P0 was decreased.

6.7.1 Disturbance I - Test Section Hole. A means of creating the first

disturbance was to manually remove the cover from an empty transducer hole in the

top of the test section. The intention of this disturbance test was to approximate

the effects of a sudden change in incoming flow or combustor pressure. The hole

was located on the top wall at 13.258 in. and runs were accomplished in which the

desired shock train was located either upstream to the hole or downstream from the

hole. The controller was capable of returning the shock train to the desired location

in both cases. Plots of the system response when the controller was turned on and

turned off as well as the pressure ratio and the ramp angles at both high and low

Reynolds number settings are presented in Figures 6.15a-6.16f. Additionally, the run

conditions for runs 6.17-6.24 are listed in Table 6.7. Since the test section operated

in a vacuum, the effect of opening the hole was to increase the static pressure into

the section, which resulted in an increase in PBP and the pressure ratio. This back

pressure increase then decreased the strength of the shock from the incoming flow

which resulted in a decrease in the back pressure. The back pressure decrease then

translated up to the hole to increase the shock and the back pressure. This cycle

continued and caused challenges for the actuator, particularly for runs 6.17, 6.18,

6.21, and 6.22, when the shock train was commanded to remain downstream relative

to the hole. The effects of the pressure cycling were not as obvious when the shock

train was commanded to be upstream to the hole. The exact timing of the disturbance

could not be recorded by the LabVIEWTM algorithm since the cover was removed by
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hand. The timing of the event is indicated by a sudden change in the xMeas value

greater than the normal xMeas oscillations. The disturbance times were aligned for

the presented disturbancee plots.

Table 6.7: Test section hole run conditions
Run Re, /ft Control xDes, in.

6.17 4.54× 106 On 15.75

6.18 4.55× 106 Off 15.75

6.19 4.48× 106 On 12.75

6.20 4.49× 106 Off 12.75

6.21 7.04× 106 On 15.75

6.22 7.05× 106 Off 15.75

6.23 7.06× 106 On 12.75

6.24 7.11× 106 Off 12.75
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Figure 6.15: Disturbance response ramp angle, pressure ratio, and LE location for
low Reynolds number settings
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Figure 6.16: Disturbance response ramp angle, pressure ratio, and LE location for
high Reynolds number settings
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6.7.2 Disturbance II - Decrease P0. The second flow disturbance introduced

was a decrease in P0 throughout a run which results in an increase in the PBP/P0

pressure ratio. The intention of this type of disturbance was to mimic the gradual

effects to the incoming flow due to turns or changes in angle of attack. Runs 6.23

and 6.24 were accomplished to consider the ability of the controller to compensate

for this type of disturbance, both of which were started at comparable Reynolds

numbers. The P0 was decreased by manually closing the regulator for flow entering

the stagnation chamber until there was not enough flow to support a shock train. In

the first run, the controller was left on throughout the run and in the second, the

shock was placed at the desired location, the controller was disengaged, and then P0

was changed. The results are presented in Figure 6.17 where xDes = 15.75 in.

When the P0 is decreased to this test section, the PBP/P0 ratio increases and the

shock train moves toward the front of the test section, as can be seen in Figure 6.17a

and Figure 6.17e without any control. It is conjectured that there are local pressure

effects occurring in the back pressure measurement region causing the back pressure

to drop at a slower rate than the total pressure. The result of this disparity between

the rate of total pressure and back pressure decrease is the increase in the pressure

ratio presented as the red line presented in Figure 6.17c. When the controller remains

engaged, the controller lowers the ramp angle to decrease the PBP/P0 ratio and bring

the shock train back downstream. If the back pressure decreased at the same rate

as the total pressure, which would be the case without the presumed local pressure

effects, the pressure ratio would remain stable and the ramp would not have to rotate

to keep the shock train at the desired location. The controller is capable of controlling

the shock train through gradual changes in the P0 setting in this test section.
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controller implemented
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6.8 Control Conclusion

Although there were three main parts to this research, they all supported im-

plementation of controlling the shock train location within an isolator. A control

algorithm was developed and validated in this chapter which validated the hypothesis

that the shock train LE location could be controlled using an automatic feedback con-

troller. The closed-loop control algorithm developed and validated in this chapter was

able to control the shock train LE location with a steady-state error within ±50% of

D. Additionally, the algorithm was capable of rejecting flow perturbations. In order

to perturb the flow, a hole was opened, while the shock was commanded upstream to

the hole in one case and downstream from the hole in another, and the controller was

able to keep the shock train LE at the desired location. A second type of perturbation

was applied to the flow by decreasing the P0 setting during the course of a run. This

decrease in P0 resulted in an increase in the PBP/P0 ratio. Again, the control algorithm

was capable of controlling the shock train LE location as the pressure ratio increased

throughout the run. The control algorithm developed has been shown to successfully

control the shock train LE location and to do so through flow perturbations.
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VII. Conclusion

The scramjet engine is a technology that can provide a significant increase in hy-

personic capability for air vehicles with additional research. The technology is still

in the early stages of development and a great deal of work still remains to field an

operationally useful system. One of the hurdles to overcome is to develop a control

system for the engine to allow significant air vehicle maneuvering without unstarting

the engine.

In this research, a method was developed and validated to control the shock train

location within a cold-flow high-speed wind tunnel. This wind tunnel was intended as

an analog for the isolator within a dual-mode scramjet. The isolator is a duct within

the scramjet where pressure increases from the inlet to the combustor. Within the

isolator a series of shocks, called a “shock train” form and when this shock train is

expunged from the inlet, the engine is unstarted which leads to a significant loss of

thrust. In order to allow air vehicle maneuvers, which would result in changes to the

flow path and the shock train location within the isolator, an operator must be able

to control the shock train location. In this research a method for controlling that

shock train location was developed and validated using an adjustable ramp located in

the downstream portion of the test section. This ramp was used to adjust the back

pressure to total pressure ratio, which changed the shock train location.

In order to develop the control algorithm, first a method of measuring the shock

train location using test section-mounted pressure transducers was implemented and

validated. This research builds on previous research in which various methods had

been considered to measure the shock train location, but the measurements had either

not been validated with shadowgraph photography [25,42] or only used shadowgraph

photography at 30 frames per sec [24]. In this research high-speed (500 frames per sec)

shadowgraph photography was used to validate the shock train location on a frame-by-

frame basis. The difference between the shock train location from the measurement

algorithm and the location from the shadowgraph was then calculated with every

set of data samples. Finally, the RMS of the differences over an entire run was
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calculated and labeled the error RMS, or eRMS. The measurement algorithm validated

in this research was capable of measuring the shock train leading edge location with

an eRMS value less than 20% of D whereas the pressure transducers were mounted

with a separation of 47.6% of D indicating the algorithm was capable of accurately

measuring the location between pressure transducers. This is the first research to

validate an algorithm capable of measuring the shock train leading edge location with

this accuracy using 500 frames per second shadowgraph imagery.

The next portion of the research was devoted to developing two dynamic models

for the shock train leading edge dynamics. The back pressure, PBP , and the ramp

angle, φMeas, were used as model inputs to develop the dynamic models which related

the shock train LE location to the input of interest. Previous modeling efforts did

not include the shock train [4,30,44], had a much smaller input range [7–10,29,31], or

treated the dynamics as noise [18]. When modeling, the eRMS value was based on the

difference between the model-predicted shock train LE location and the LE location

measured using the shadowgraph imagery. The results were eRMS values less than

24% of D with PBP as the input and less than 13% of D when φMeas is the input

while the transducers were mounted with a spacing of 47.6% of D. As an extension

of the PBP model, a pressure ratio, PBP/P0, model was also developed. Simulations

accomplished using this data returned eRMS values less than 16% of D when compared

to optical measurements. These results are particularly impressive considering that it

has been shown that a steady-state shock train will oscillate around its mean location

up to an entire duct height, D (i.e., the shock train will oscillate with a range from

−D to +D around its mean location) [67]. This is the first research to develop and

validate a model of the shock train LE location dynamics accurate to within a quarter

of a duct height.

In the final portion of the research, a closed-loop feedback controller was de-

veloped to place the shock train leading edge at a desired location within the wind

tunnel. Little research has previously been accomplished in the open literature on

actively controlling the shock train location. Noting that the shock train will tend
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to oscillate up to D at steady-state [67], the goal of the research was to develop an

algorithm capable of controlling the shock train LE location so that the mean steady-

state location and shock oscillations would remain within a range of ±D around the

desired shock train LE location. The closed-loop controller surpassed the goal and

was able to control the steady-state shock train LE location mean along with oscil-

lations to a range of ±50% of D around the desired shock train location using an

actuator with a 10 Hz bandwidth. This is the first research to develop a shock train

LE control algorithm that has been tested in the laboratory and has been validated

using shadowgraph photography to control the shock train location throughout the

test section and at a range of Reynolds numbers.

Potential continued research includes validating the modeling and control algo-

rithms on different test sections. The next logical step in this research would be to

consider the applicability of the model structure to other test sections, particularly

heated ones. If no additional test sections are available, the validity of the model

structure could be investigated using the Mach 3 nozzle located at AFIT. Finally, if

a first-principles physics-based model is developed, the system identification model

could be compared to that physics-based model for final validation.

The components necessary for a closed-loop shock train LE location control al-

gorithm were developed in this research. The impact of this research is the potential to

decrease the needed scramjet isolator length, saving air vehicle weight and opening air

vehicle interior space. An additional impact of control of the shock train LE location

is a decreased chance of inlet unstart along with an increase in the operational utility

of the engine to enable air vehicle maneuvers. The research lays the experimental

groundwork for a closed-loop scramjet shock-train LE control algorithm.
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Appendix A. Reynolds Number Calculation

The calculation used to calculate the Reynolds number, Re, is presented in this ap-

pendix. The calculations, based on isentropic relations and the ideal gas law [68], are

the same as those used previously [56] on this test section. The Reynolds numbers

used in plot titles are based on the time-average total pressure, P0,Ave, the time-

average total temperature, T0,Ave, and the time-average of the static pressure at the

most upstream transducer, Ps,Ave. All three of these averages are calculated based on

the tare portion of a run. T0,Ave, Ps,Ave, and P0,Ave are calculated by averaging each

P0(k∆t), Ps,ζ1(k∆t), and T0(k∆t), for all k samples taken during the tare portion of

the run.

First, calculate the isentropic relationship, P0,Ave/Ps,Ave, using the previously

made measurement. Then, rearrange Equation (A.1) to get Equation (A.2) and solve

for the average stream Mach number, MAve. The specific heat ratio, γ, is assumed

equal to 1.4 in all equations.

P0,Ave

Ps,Ave
=

(
1 +

γ − 1

2
M2

Ave

) γ
γ−1

(A.1)

MAve =

(
2

γ − 1

(
P0,Ave

Ps,Ave

γ−1
γ

− 1

)) 1
2

(A.2)

Now, use the measured T0,Ave to calculate the average flow temperature, TAve. Begin

by rearranging Equation (A.3) to get Equation (A.4) and then substitute.

T0,Ave

TAve
= 1 +

γ − 1

2
M2

Ave (A.3)

TAve =
T0,Ave

1 + γ−1
2
M2

Ave

(A.4)

The stream average speed of sound, aAve and the stream average velocity, VAve can

now be found by substituting into Equation (A.5) and Equation (A.6), respectively,
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where R is the specific gas constant and it is assumed that R = 1545.31lbf · ft/(lbm ·R)

aAve =
√
γRTAve · 32.174lbm · ft/lbf · sec2 (A.5)

VAve = MAve · aAve (A.6)

Calculate the average flow density, ρAve, by rearranging the ideal gas law to get

Equation (A.7) and substituting where the Ps,Ave is converted from the recorded

units lbf/in2 to the units lbf/ft2.

ρAve =
Ps,Ave
R · TAve

(A.7)

Use the previous results, along with Sutherland’s Law, as presented in Equation (A.8)

to calculate the average viscosity, µAve. Assume reference total temperature, T0,Ref ,

and total viscosity, µ0,Ref to be standard sea level conditions, T0,Ref = 518.69 R and

µ0,Ref = 1.2 × 10−5 lbm/(ft · s).

µAve = µ0,Ref

(
TAve
T0,Ref

) 3
2 T0,Ref + 198.72

TAve + 198.72
(A.8)

Finally, the Reynolds number is calculated using Equation (A.9). The result is in

units of /ft.

Re =
ρAve · VAve
µAve

(A.9)
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Appendix B. Interpolation and Power Spectral Density Calculation

The linear interpolation procedure and the power spectral density (PSD) equations

are presented in this appendix.

B.1 Linear Interpolation Method

Linear interpolation was used in several of the measurement algorithms pre-

sented in Chapter IV. An example of when linear interpolation was used is in the

ratio method calculation, Equation (4.4), which is represented here as Equation (B.1).

xPR(k) = interp(PR(k),xTrans, PRDes) (B.1)

Additionally, Figure 4.1 is represented here as Figure B.1 with some pressures and

locations noted on the figure. The Matlabr algorithm first finds the pressure ratio
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Figure B.1: Illustration of pressure ratio measurement method

immediately less than and the pressure ratio immediately greater than the desired

pressure ratio, PRDes, in the pressure ratio vector, PR(k). In this example, those
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pressure ratios were measured at transducers ζ6 and ζ7, respectively. The algorithm

then gets the transducer mounting location from the transducer mounting vector,

xTrans. Finally, the shock train LE location is calculated using Equation (B.2). This

procedure was implied whenever interp was used.

xPR(k) = m

(
PRDes −

Ps,ζ6
PTare,6

)
+ xζ6 (B.2)

where

m =
xζ7 − xζ6

Ps,ζ7
PTare,7

− Ps,ζ6
PTare,6

(B.3)

B.2 Power Spectral Density Calculation

The power spectral density is used in the frequency method approach which

was also presented in Chapter IV. While the Matlabr pwelch.m routine was used

in this research, the process to calculate the PSD is straightforward. The first step

is to take the discrete Fourier transform (DFT) of the desired vector. In the case

of the frequency method a vector of the pressures recorded over the previous 512

samples was used as originally presented in Equation (4.13) and is repeated here as

Equation (B.4).

ψPs,ζi (k) = PSD(Ps,ζi((k − 512) : k)) (B.4)

The DFT is calculated using Equation (B.5)

D(kDFT ) =
1

N

N−1∑

r=0

xre
−i
(

2πrkDFT
N

)

(B.5)

where kDFT is a slice of the DFT such that the discretized frequencies are defined in

Equation (B.6), N is the number of samples, ∆t is the time between samples, and

xr ≡ Ps,ζi(k = r + 512).

ωkDFT =
2πkDFT

∆tN
(B.6)
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The PSD is then calculated by multiplying the complex conjugate of the DFT times

the DFT as presented in Equation (B.7) where ∗ means the complex conjugate,

D(1, 2, . . . N/2) implies a vector of the first N/2 = 256 D(kDFT ) calculations, and

×ew implies element-wise multiplication.

ψPs,ζi (k) = D(1, 2 . . . N/2)∗ ×ew D(1, 2 . . . N/2) (B.7)
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Appendix C. Traditional System Identification

C.1 Linear System Identification Models

While no system is completely linear, in order to understand some of the non-

linear techniques, an understanding of the linear techniques is useful. Several texts

have been written about both linear [5, 69–71] and nonlinear [58,60,61] system iden-

tification and the contents of the following discussion is common to all of them. The

presented linear, time-invariant (LTI) Single-Input, Single-Output (SISO) models are

based on developing an estimate for the transfer functions relating the commanded in-

put and noise to the output. These linear transfer functions are based on the impulse

response function, which characterizes a system based on the inputs and outputs for

a sampled system in Equation (C.1) [5]

y(t) =
∞∑

k=1

g(k)u(t− k) +
∞∑

k=0

h(k)ν(t− k) (C.1)

where y is the system response, g is the impulse response function, ν is white noise, h is

a function to “color” the white noise to match the system noise, u is the system input,

t = k∆T for each instant, and ∆T is the time between samples. In order to simplify

this notation, the q time shift operator is introduced such that qu(t) = u(t + 1)

and q−1u(t) = u(t − 1). Then, the following notation simplifications are made in

Equations (C.2) and (C.3) [5].

G(q) =
∞∑

k=1

g(k)q−k (C.2)

H(q) =
∞∑

k=0

h(k)q−k (C.3)

With further simplification, the system can be characterized, along with a character-

ization of the noise, as [5]

y(t) = G(q)u(t) +H(q)ν(t). (C.4)
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In Equation (C.4), there are an infinite number of possible parameters in H and

G to solve for so, in order to make the task of developing a model of the system more

tractable, a finite number of parameters must be used. Let the number of parameters

to be considered be d, then the vector θ ∈ Rd is the vector of parameters that must

be optimized to create a model of the system. Substituting this vector, we can now

gain the general equation for the parameterized models as seen in Equation (C.5)

[5]. Further, with some rearrangement, this can also be used to find the one-step

ahead predictor equation that will be quite useful for a control algorithm as seen in

Equation (C.6) [5].

y(t) = G(q, θ)u(t) +H(q, θ)ν(t) (C.5)

ŷ(t|θ) = H−1(q, θ)G(q, θ)u(t) +
[
1−H−1(q, θ)

]
y(t) (C.6)

Different models within this construct are created by choosing different polynomials

for the H(q, θ) and G(q, θ) transfer functions. This general construct is presented

in Figure C.1 where A, B, C, D, and F are discrete polynomials with a vector of

parameters of length d, listed in the vector θ, as defined in Equations (C.8)-(C.12).

In these equations, A(q)y(t), D(q)y(t), and the F (q)y(t) are the autoregressive (AR)

portions. B(q)u(t) is referred to as the exogenous input (X) portion, and, C(q)e(t) is

referred to as the moving average part (MA)of the model [5, 70,71].

A(q)y(t) =
B(q)

F (q)
u(t) +

C(q)

D(q)
ν(t) (C.7)
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where

A(q) = 1 + a1q
−1 + · · ·+ anaq

−na (C.8)

B(q) = b1q
−1 + · · ·+ bnaq

−nb (C.9)

C(q) = 1 + c1q
−1 + · · ·+ cncq

−nc (C.10)

D(q) = 1 + d1q
−1 + · · ·+ dndq

−nd (C.11)

F (q) = 1 + f1q
−1 + · · ·+ fnfq

−nf (C.12)

C

D

B

F

1

A
+

e

u y

Figure C.1: General linear parameter model [5]

The different models that can be created from this construct are presented in

Table C.1. In this table, the first column is the particular polynomials included in

the model and the second column is the name of the model that results from that

polynomial set.

Table C.1: Common black-box SISO models [5]
Polynomial Model Structure

B Finite Impulse Response (FIR)
AB AutoRegressive with eXternal input (ARX)

ABC AutoRegressive Moving Average with eXternal input (ARMAX)
AC AutoRegressive Moving Average (ARMA)
BF Output-Error (OE)

BFCD Box-Jenkins (BJ)
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Figure C.2: Schematic of an ARX model

In particular, for this research, ARX models were used for the linear portion of

a Hammerstein model. The Hammerstein model structure will be discussed in the

nonlinear modeling portion of this appendix. The ARX model structure is simplified

to only two polynomials, an autoregressive, and an exogenous input one, as presented

in Figure C.2 [5]. The ARX model is linear in the parameters, so optimization can

be accomplished using least squares. In this research, the model order was changed

by changing the order of the A and/or the B polynomial.

C.2 Nonlinear System Identification Models

As an extension of the ARX model, the next model construct considered was

the Nonlinear ARX (NARX) model structure. A NARX model is created by replacing

the linear relationship in an ARX model such as presented in Equation (C.13) with a

nonlinear relationship such as presented in Equation (C.14) by adding f(·) [61].

ŷ(k) = b1u(k − 1) + . . .+ bmu(k −m)− a1y(k − 1)− . . .− amy(k −m) (C.13)

ŷ(k) = f(b1u(k − 1), . . . , bmu(k −m), a1y(k − 1), . . . , amy(k −m)) (C.14)

The nonlinear function, f(·), can be any nonlinear function, leading to an infinite

number of possibilities. Only polynomial nonlinearities were permitted in the NARX

model so that there was a limited number of possible models and each nonlinear model

was linear in the parameters.
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The other structure considered was the Hammerstein model structure. These

models include a static nonlinearity feeding into a linear transfer function. The ad-

vantage to this configuration is that, assuming the nonlinearity is invertible, the non-

linearity can be cancelled with inversion and then a controller can be created based

on the linear dynamics [60,61]. The procedure of inverting the nonlinearity was used

in the control algorithm development and implementation in this research. Due to

the assumption that the nonlinearity inversion was adequate for control in the local

region of the nonlinearity input space, the nonlinearity was not included when con-

sidering pole-placement and observer design and the poles controller poles could be

placed using linear techniques.

Once the model structure was determined, the number of parameters in the

model was selected. The optimal number of parameters in a nonlinear model is

a balance between two different kinds of errors; bias and variance error. Variance

error is defined as the amount of change of the model parameters from the optimal

parameter values [61]. This error relates to the number of parameters in that, as the

number of parameters increases, assuming a static number of data points, the ability

to estimate the values of the different parameters decreases. In order to decrease the

variance error, one must either collect more data or decrease the number of parameters

in the model. Bias error, on the other hand, is related to a decreased flexibility of the

model to fit the data due to an insufficient number of parameters [61]. In order to

decrease the bias error, one must increase the number of parameters in the model to

allow for a more ‘flexible’ model. In order to decrease the overall error, the number of

parameters considered were limited and a large number of data points were collected

in the research.
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Appendix D. Pseudo Random Binary Sequence Creation

One of the preliminary considerations when taking a system identification approach

to modeling a system is the input signal. The only modes that can be activated for

modeling are the modes that are activated by the input signal, a concept labeled

“persistent excitation” [5]. As a result, it would be nice to use white noise as the

input source to ensure all modes were excited. White noise is not feasible in an actual

system, so a similar form of input was developed. The input used for this research was

labeled an Amplitude-modulated Pseudo-Random Binary Sequence (APRBS) [61].

The advantage to using an APRBS is that the mean value and the covariance function

are similar to white noise [71]. An APRBS is an extension of a Psuedo Random Binary

Sequence (PRBS) which is developed using shift registers between two distinct input

settings. The extension to an APRBS is to allow for multiple input settings, an

extension that is necessary for a nonlinear system [60,61].

An APRBS with five levels was used as the excitation signal in the system

identification portion of this research. First, the signal was generated using Equa-

tion D.1 [60]

φCtl = c1⊗5φCtl(k−1)⊕5c2⊗5φCtl(k−2)⊕5c3⊗5φCtl(k−3)⊕5c4⊗5φCtl(k−4) (D.1)

where ⊗5 implies modulo base five multiplication and ⊕5 implies modulo base five

addition. Further, the values for the constants for the longest period before a repeat

were c1 = 1, c2 = −1, c3 = 1, and c4 = 2 which returns a period of 724 changes prior to

a repeat [60]. When using Equation D.1, five levels of numbers between zero and five

are generated which can be repeated with each experiment. To change the sequence

one need only change the initial conditions and, to change the sequence mean, one

need only add a bias. The output for a five-level PRBS is presented in Figure D.1.

In Figure D.1a, a time-based plot of the commanded ramp angle is provided. The

repetitive nature of a PRBS can be noted in this plot. An autocorrelation plot of

the same data is then provided in Figure D.1b. The autocorrelation of white noise

will have a spike at t = 0 and will be zero when t 6= 0. Although the autocorrelation
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Figure D.1: The five-level APRBS time-based and autocorrelation plots

presented in Figure D.1b does not return to zero when t 6= 0, it does drop significantly,

and remains low and relatively level until the sequence repeats after 724 ramp angle

changes. This decrease and leveling off is what is meant by saying the APRBS has

white noise-like statistical properties.

After initial runs to determine the ramp actuation input range between the

ram/scram transition and unstart, a five-level APRBS was developed to span the

range and implemented in LabVIEWTM. The time required between ramp actuation

changes was 0.1 sec. since the ramp actuator had a 10 Hz bandwidth. The input

and output data were then collected and used to develop the models described in

Chapter V.

149



Appendix E. Shadowgraph Leading Edge Location Measurement

Technique

The algorithm used to find the leading edge (LE) according to the shadowgraph im-

age, xOptic is explained in this appendix. The procedure is based on the assumption of

an affine relationship between the image space and the laboratory space. The affine

relationship assumption is then taken advantage of by creating a transform from image

space to laboratory space using least squares. The technique involves manually select-

ing LE locations from automated frame by frame images. The streamwise location of

the middle of the first lambda shock in the shock train, as presented in Fig. E.1, is

defined as the shock train leading edge for this research. A fully automated algorithm

was not considered.

x

xOptic = 9.21 in.

Figure E.1: A shadowgraph image of the shock train and the leading edge location

E.1 Transformation Creation

The first step is to create a grid on one of the test section acrylic walls as

presented in Figure E.2. The location of (xA, yA), (xB, yB), . . . , (xF , yF ) is referenced

to a zero located along the test section floor at the nozzle exit. These points are

saved as a vector of grid positions (xG and yG) as shown in Equation (E.1) and

Equation (E.2).

xG = [xA xB xC xD xE xF ]T (E.1)

yG = [yA yB yC yD yE yF ]T (E.2)
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Test Section Wall and Grid Markings in Laboratory Space
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Figure E.2: A drawing of the grid drawn on the wall of the test section for shadow-
graph calibration

The next step to developing the transformation from the image space to the

wall space is to choose and display a frame from the recorded avi file. A drawing

of a frame in image space along with the grid overlay and the set of intersections,

(uA, vA), (uB, vB), . . . , (uF , vF ), is presented in Figure E.3. Then, using the Matlabr

code, ginput(·), each of the intersections is clicked on and the function returns the in-

tersection location vectors uG and vG as shown in Equation (E.3) and Equation (E.4).

uG = [uA uB uC uD uE uF ]T (E.3)

vG = [vA vB vC vD vE vF ]T (E.4)

Using least squares, the transformation from image space to wall space can now

be created. First, place uG, vG and a vector of ones into a matrix as presented in

Equation (E.5) and solve for the transformation, T , according to Equation (E.6).

H = [uG vG 16×1] (E.5)

T =
(
HTH

)−1
HTxG (E.6)
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Test Section Wall and Grid Markings in Image Space
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Figure E.3: A drawing of a schlieren image with grid overlay

E.2 Determining Shock Train Leading Edge Location

Now that the transformation has been created, the actual collection of the data

can be started. The Matlabr code, ginput(·) is again used to input the location of

the LE. The procedure is to open an image, click on the LE and save a uLE and vLE

then close the image and open the next image. This is accomplished in a loop for all

of the frames in the avi file. After each image space LE point at every sample time,

k∆t, is collected, the transform can then be used to calculate the shadowgraph LE

location measurement, xOptic, according to Equation (E.7).

x̂Optic(k∆t) =
[
uLE(k∆t) vLE(k∆t) 1

]
· T (E.7)
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Appendix F. Laboratory Equipment Pictures

Pictures and model numbers (where available) of the individual components intro-

duced in Chapter III are presented in this appendix. The order of the presentation

is to follow the air flow as it begins in the ambient according to Figure F.1, a reprint

of Figure 3.1 from Chapter III. A picture of the test section, mounted in the AFIT

wind tunnel is presented in Figure F.2.
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(Pneumatic Ball)
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Chamber

Nozzle
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Vacuum Tank

Vacuum Valve
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θMeasMeas Ramp Angle,

Air Dryer

Figure F.1: Illustration of test facility
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Figure F.2: Picture of test facility

The air initially starts in the ambient and is compressed by one of two Ingersoll

Rand rotary screw compressors (model number UP6-50PE-200) presented in Fig-

ure F.3. The compressors are started and stopped automatically using the pressure

readings in the high-pressure chamber.

Figure F.3: Ingersoll Rand rotary screw compressor
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Upon leaving the compressor, the air flows through a Donaldson desiccant dryer

(model AHLD-350) before being fed into a high-pressure pressure vessel. The high-

pressure chamber is maintained at approximately 180 psi. A picture of the air dryer is

presented in Figure F.4. The high-pressure chamber is right-hand tank in Figure F.5.

Figure F.4: Donaldson desiccant dryer
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Figure F.5: High pressure and vacuum chambers

The air pressure is then reduced to 145 psi using a Kimray gas back pressure

pressure regulator (model number 230 SGT PRB). A picture of the Kimray pressure

regulator is presented in Figure F.6.

Figure F.6: Kimray pressure regulator
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The flow then enters an air filter, presented in Figure F.7. The maximum pres-

sure rating listed on the filters Pneumatic Products (part number PCC112001G49)

housing is 150 psi, which is the reason for the Kimray pressure regulator.

Figure F.7: Air filter

The next part of the test equipment is the ball valve that opens at the beginning

and closes at the end of a run. A picture of the pneumatic valve and controller is

presented in Figure F.8.
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Figure F.8: High pressure ball valve and controller

The ball valve, the vacuum valve presented in Figure F.18, and the hydraulic

actuator presented in Figure F.12 are controlled using a National Instruments (NI)

PXI computer. A picture of this computer, along with four of the five BNC boards

(NI model BNC-2120) is presented in Figure F.9. The computer included a NI PXI

8196 embedded controller, a NI PXI 6070E input/output (I/O) board, three NI PXI

6120 simultaneous sampling multifunction I/O boards, and a NI PXI 6259 M series

multifunction data acquisition board.

Once the ball valve has opened, the flow entered a Leslie pressure reducing

valve (class GPK-1, size 2). A picture of the Leslie valve is presented in Figure F.10.

The pressure on the diaphragm in the Leslie valve is controlled using the black hand

control knob mounted on top of the air filter seen in Figure F.7. The total pressure

entering the stagnation chamber is controlled with the Leslie valve.
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Figure F.9: NI PXI computer and BNC boards

Figure F.10: Leslie air-loaded pressure reducing valve

After flowing through the Leslie valve, the air enters the stagnation chamber

presented in Figure F.11 and then the test section presented in Figure F.12. The Mach

1.8 nozzle is in the left-hand portion of Figure F.12. The bolt pattern on the nozzle

outlines the nozzle interior contours. The test section is in the middle of Figure F.12.

In this figure, the acrylic walls that were used to enable shadowgraph photography
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can be seen. Also, the hydraulic actuator is the black cylinder mounted below the

right-hand portion of the test section. Finally, pressure transducer cables are aligned

along the top of the test section. Throughout this research the transducers were

mounted along the bottom of the test section as seen in the test section illustration

presented in Figure F.13. Each of these cables are plugged into one of five Endevco

DC amplifiers (Model 136) seen in Figure F.14 which then are connected via BNC

cables to one of the five BNC boards connected to the NI PXI computer.

Figure F.11: Stagnation chamber

In addition to the amplifiers, the shadowgraph photography controller is the

right-hand personal computer (PC) and the hydraulic controller is the left-hand PC

seen in Figure F.14. Each of these computers accept commands from the NI PXI

computer via BNC cables (from the BNC 2120 boards) and then control both the

hydraulic actuator seen in Figure F.12 and the high-speed FASTCAM-X 1280 PCI

camera presented in Figure F.15. Additionally, the hydraulic pressure is provided by

the MTS 685.03 3000 psi pump presented in Figure F.16. The hydraulic pump is

started at the beginning of testing for a day and continues to run throughout the day.
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Figure F.12: Nozzle, test section, and hydraulic actuator
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Figure F.13: Test section illustration

After the test section,the flow enters a diffuser, presented in Figure F.17 before

flowing through the vacuum chamber solenoid valve presented in Figure F.18. The

solenoid valve opens before and closes after the high-pressure valve in order to ensure

the test section is not over-pressured. The solenoid valve is controlled by the NI PXI

computer.
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Figure F.14: Endevco Model 136 DC amplifiers, hydraulic control computer, and
shadowgraph control computer

Figure F.15: FASTCAM 1280 PCI shadowgraph camera

Next, the flow enters the vacuum chamber, which is the left-hand tank presented

in Figure F.5. A vacuum is developed in this tank using the Stokes Microvac (Model

412-11) oil-sealed pump presented in Figure F.19.
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Figure F.16: MTS hydraulic actuator compressor

Figure F.17: Wind tunnel diffuser
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Figure F.18: Vacuum chamber solenoid valve and controller

Figure F.19: Stokes Microvac vacuum pump
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Appendix G. Transducer Calibrations

Each of the 15 Endevco 8530c-50 pressure transducers were calibrated at the AFRL

Propulsion Directorate prior to the commencement of data collection. The calibra-

tion equations are listed in Table G.1 where the relationship between the measured

voltage and the output pressure is described by Equation G.1. These values were pro-

grammed into the LabVIEWTM program and were used to convert the input voltage

to the output pressure reading. The data used to develop these linear relationships is

presented in Table G.2. The data was collected by pressurizing the transducers with

the pressures listed in the second row. The voltage output from each amplifier/sensor

combination at the input pressure is was recorded and is presented in the main body

of Table G.2. Finally, the raw data along with a line for the calibration equation is

presented for each amplifier/sensor combination in Figures G.1a-G.5c.

Pressure = Slope× Voltage + y intercept (G.1)

Table G.1: Pressure transducer calibration values
Amplifier Sensor Slope y intercept

1 1 4.7394 0.0676
1 2 4.9021 -1.1905
1 3 5.7951 1.9487
2 1 4.3487 1.2576
2 2 6.2412 -0.7847
2 3 5.1196 -0.6420
3 1 3.5097 -0.3441
3 2 3.7868 -0.3241
3 3 3.8929 0.9003
4 1 4.2829 0.2102
4 2 3.5510 0.1951
4 3 6.3234 2.7777
5 1 4.6602 0.7994
5 2 5.2613 1.9285
5 3 5.6273 -1.2128
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Figure G.1: Calibration data plots for amplifier 1
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Figure G.2: Calibration data plots for amplifier 2

0 2 4 6
0

5

10

15

20

25

30

35

40

Voltage, V.

Pr
es

su
re

, p
si

a

 

 
Measured
Calibration

(a) Sensor 1

0 2 4 6
0

5

10

15

20

25

30

35

40

Voltage, V.

Pr
es

su
re

, p
si

a

 

 
Measured
Calibration

(b) Sensor 2

0 2 4 6
0

5

10

15

20

25

30

35

40

Voltage, V.

Pr
es

su
re

, p
si

a

 

 
Measured
Calibration

(c) Sensor 3

Figure G.3: Calibration data plots for amplifier 3
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Figure G.4: Calibration data plots for amplifier 4
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Figure G.5: Calibration data plots for amplifier 5
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Appendix H. Matlabr Analysis Codes

The Matlabr m-codes used in the location analysis portion of Chapter IV and the

modeling development and analysis portion of Chapter V are presented in this ap-

pendix. The Matlabr codes included in this appendix are the analysis codes for the

pressure ratio, the pressure rise, the standard deviation, the frequency content, the

summation of pressures, and the back pressure method for locating the shock train

LE. Additionally, the Matlabr code for developing the ARX and NARX models along

with the code for running the simulations are presented.
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H.1 Pressure Ratio Method

function [xRatio] = RatioMethod(PressArray, LocArray)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Maj John R Hutzel

% AFIT PhD Candidate

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code accepts the following input:

% PressArray - a (k x 14) table of the pressure measurements for each k

% and each of the 14 transducers. The first transducer is the most

% upstream and the 14th transducer is the BP transducer.

% LocArray - a (14 x 1) vector of transducer mount locations.

% This code returns the following output:

% xRatio - a struct of (k x 1) vectors of the calculated shock train LE

% locations using the pressure ratio method.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Create some empty arrays.

NS = size(PressArray,1);

RatioArray = zeros(size(PressArray));

xRatio.P25 = zeros(NS,1);

xRatio.P50 = zeros(NS,1);

xRatio.P75 = zeros(NS,1);

Create the tare data array.

p1 = plot(PressArray);

title(’Click on the tare begining and ending.’)

[x_tare, y_tare] = ginput(2);

clear p1
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TareTimeStart = round(x_tare(1));

TareTimeEnd = round(x_tare(2));

TareArray = mean(PressArray(TareTimeStart:TareTimeEnd,:));

p1 = plot(PressArray);

title(’Click on the calculation start time.’)

[x_ramp, y_ramp] = ginput(1);

clear p1

Loop through and calculate the shock train locations.

for ii = round(x_ramp):NS

RatioArray(ii,:) = PressArray(ii,:)./TareArray;

I25 = find(RatioArray(ii,:) >= 1.25);

I50 = find(RatioArray(ii,:) >= 1.50);

I75 = find(RatioArray(ii,:) >= 1.75);

if isempty(I25)

xRatio.P25(ii,1) = 0;

elseif (min(I25) == 1);

xRatio.P25(ii,1) = 24;

else

PLess = RatioArray(ii,min(I25)-1);

PMore = RatioArray(ii,min(I25));

XLess = LocArray(1,min(I25)-1);

XMore = LocArray(1,min(I25));

xRatio.P25(ii,1) = interp1([PLess PMore], [XLess XMore], 1.25);

end

if isempty(I50)

xRatio.P50(ii,1) = 0;
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elseif (min(I50) == 1);

xRatio.P50(ii,1) = 24;

else

PLess = RatioArray(ii,min(I50)-1);

PMore = RatioArray(ii,min(I50));

XLess = LocArray(1,min(I50)-1);

XMore = LocArray(1,min(I50));

xRatio.P50(ii,1) = interp1([PLess PMore], [XLess XMore], 1.50);

end

if isempty(I75)

xRatio.P75(ii,1) = 0;

elseif (min(I75) == 1);

xRatio.P75(ii,1) = 24;

else

PLess = RatioArray(ii,min(I75)-1);

PMore = RatioArray(ii,min(I75));

XLess = LocArray(1,min(I75)-1);

XMore = LocArray(1,min(I75));

xRatio.P75(ii,1) = interp1([PLess PMore], [XLess XMore], 1.75);

end

end

172



H.2 Pressure Method

function [xPress] = PressMethod(PressArray, LocArray)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Maj John R Hutzel

% AFIT PhD Candidate

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code accepts the following input:

% PressArray - a (k x 14) table of the pressure measurements for each k

% and each of the 14 transducers. The first transducer is the most

% upstream and the 14th transducer is the BP transducer.

% LocArray - a (14 x 1) vector of transducer mount locations.

% This code returns the following output:

% xPress - a struct of (k x 1) vectors of the calculated shock train LE

% locations using the pressure method.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Create some empty arrays.

NS = size(PressArray,1);

xPress.P25 = zeros(NS,1);

xPress.P50 = zeros(NS,1);

xPress.P75 = zeros(NS,1);

p1 = plot(PressArray);

title(’Click on the calculation start time.’)

[x_ramp, y_ramp] = ginput(1);

clear p1

Loop through and calculate the shock train locations.
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for ii = x_ramp:NS

% Calculate the interpolation points

Interp25 = PressArray(ii,1) + 0.25*(max(PressArray(ii,:))-PressArray(ii,1));

Interp50 = PressArray(ii,1) + 0.50*(max(PressArray(ii,:))-PressArray(ii,1));

Interp75 = PressArray(ii,1) + 0.75*(max(PressArray(ii,:))-PressArray(ii,1));

Index25 = find(PressArray(ii,:) >= Interp25);

Index50 = find(PressArray(ii,:) >= Interp50);

Index75 = find(PressArray(ii,:) >= Interp75);

if isempty(Index25)

xPress.P25(ii,1) = 0;

elseif (min(Index25) == 1);

xPress.P25(ii,1) = 24;

else

PLess = PressArray(ii,min(Index25)-1);

PMore = PressArray(ii,min(Index25));

XLess = LocArray(1,min(Index25)-1);

XMore = LocArray(1,min(Index25));

xPress.P25(ii,1) = interp1([PLess PMore], [XLess XMore], Interp25);

end

if isempty(Index50)

xPress.P50(ii,1) = 0;

elseif (min(Index50) == 1);

xPress.P50(ii,1) = 24;

else

PLess = PressArray(ii,min(Index50)-1);

PMore = PressArray(ii,min(Index50));

XLess = LocArray(1,min(Index50)-1);

XMore = LocArray(1,min(Index50));
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xPress.P50(ii,1) = interp1([PLess PMore], [XLess XMore], Interp50);

end

if isempty(Index75)

xPress.P75(ii,1) = 0;

elseif (min(Index75) == 1);

xPress.P75(ii,1) = 24;

else

PLess = PressArray(ii,min(Index75)-1);

PMore = PressArray(ii,min(Index75));

XLess = LocArray(1,min(Index75)-1);

XMore = LocArray(1,min(Index75));

xPress.P75(ii,1) = interp1([PLess PMore], [XLess XMore], Interp75);

end

ii/NS*100

end
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H.3 Standard Deviation Method

function [xStdDev] = StDevMethod(PressArray, LocArray)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Maj John R Hutzel

% AFIT PhD Candidate

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code accepts the following input:

% PressArray - a (k x 14) table of the pressure measurements for each k

% and each of the 14 transducers. The first transducer is the most

% upstream and the 14th transducer is the BP transducer.

% LocArray - a (14 x 1) vector of transducer mount locations.

% This code returns the following output:

% xStdDev - a struct of (k x 1) vectors of the calculated shock train LE

% locations using the standard deviation method.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Create some empty arrays.

NS = size(PressArray,1);

xStdDev.S12 = zeros(NS,1);

xStdDev.S14 = zeros(NS,1);

xStdDev.S16 = zeros(NS,1);

xStdDev.S18 = zeros(NS,1);

x0 = zeros(NS,1); x1 = zeros(NS,1); x2 = zeros(NS,1);

y0 = zeros(NS,1); y1 = zeros(NS,1); x2 = zeros(NS,1);

Create the tare data array.

p1 = plot(PressArray);

title(’Click on the tare begining and ending.’)
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[x_tare, y_tare] = ginput(2);

clear p1

TareTimeStart = round(x_tare(1));

TareTimeEnd = round(x_tare(2));

TareArray = mean(PressArray(TareTimeStart:TareTimeEnd,:));

p1 = plot(PressArray);

title(’Click on the calculation start time.’)

[x_ramp, y_ramp] = ginput(1);

clear p1

PS = PressArray;

% %% Loop through and calculate the shock train locations

StdDevNum = 250;

for ii = round(x_ramp):NS

% for ii = 70000:90000

StDevArray(ii,:) = std(PressArray(ii-StdDevNum:ii,:),0,1)/...

std(PressArray(ii-StdDevNum:ii,1));

% Calculate the interpolation points

[UpStd, MaxInd] = max(StDevArray(ii,:));

% Get the maximum at each sample

[MaxSamp, MaxInd] = max(StDevArray(ii,:));

if MaxInd == 1

xStdDev.S12(ii) = 0;

xStdDev.S14(ii) = 0;

xStdDev.S16(ii) = 0;

xStdDev.S18(ii) = 0;

elseif MaxInd == 14

xStdDev.S12(ii) = 24;
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xStdDev.S14(ii) = 24;

xStdDev.S16(ii) = 24;

xStdDev.S18(ii) = 24;

else

x0(ii) = LocArray(MaxInd-1); y0(ii) = StDevArray(ii, MaxInd-1);

x1(ii) = LocArray(MaxInd); y1(ii) = MaxSamp;

x2(ii) = LocArray(MaxInd+1); y2(ii) = StDevArray(ii, MaxInd+1);

if MaxSamp >= 18

xStdDev.S12(ii) = LocArray(MaxInd);

xStdDev.S14(ii) = xStdDev.S12(ii);

xStdDev.S16(ii) = xStdDev.S12(ii);

xStdDev.S18(ii) = xStdDev.S12(ii);

elseif (MaxSamp < 18) && (MaxSamp >= 5)

Slope = (y1(ii)-y0(ii))/(x1(ii)-x0(ii));

yInt = y1(ii)-Slope*x1(ii);

xProjection12 = (12-yInt)/Slope;

xProjection14 = (14-yInt)/Slope;

xProjection16 = (16-yInt)/Slope;

xProjection18 = (18-yInt)/Slope;

xStdDev.S12(ii) = min([xProjection12 x2(ii)]);

xStdDev.S14(ii) = min([xProjection14 x2(ii)]);

xStdDev.S16(ii) = min([xProjection16 x2(ii)]);

xStdDev.S18(ii) = min([xProjection18 x2(ii)]);

else

xStdDev.S12(ii) = mean([x1(ii-1) x2(ii-1)]);

xStdDev.S14(ii) = xStdDev.S12(ii);

xStdDev.S16(ii) = xStdDev.S12(ii);

xStdDev.S18(ii) = xStdDev.S12(ii);

x0(ii) = x1(ii-1); y0(ii) = y1(ii-1);
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x1(ii) = x1(ii-1); y1(ii) = y1(ii-1);

x2(ii) = x2(ii-1); y2(ii) = y2(ii-1);

end

end

ii/NS*100

end
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H.4 Frequency Content Method

function [xPSD] = PSDMethod(PArray, LocArray)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Maj John R Hutzel

% AFIT PhD Candidate

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code accepts the following input:

% PArray - a (k x 14) table of the pressure measurements for each k

% and each of the 14 transducers. The first transducer is the most

% upstream and the 14th transducer is the BP transducer.

% LocArray - a (14 x 1) vector of transducer mount locations.

% This code returns the following output:

% xPSD - a struct of (k x 1) vectors of the calculated shock train LE

% locations using the PSD method.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Create some empty arrays to speed things up.

NS = size(PArray,1);

xPSD.PSD25 = zeros(NS,1);

xPSD.PSD50 = zeros(NS,1);

xPSD.PSD75 = zeros(NS,1);

RMSVector = zeros(size(PArray));

iiStart = 1000;

iiEnd = NS;

for ii = iiStart:iiEnd

Calculate the PSDs at each k and each transducer.
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Samps = [ii-511:ii];

[A1S1Pxx,f1] = pwelch(PArray(Samps,7),[],[],[],10000,’onesided’);

[A1S2Pxx,f2] = pwelch(PArray(Samps,8),[],[],[],10000,’onesided’);

[A1S3Pxx,f3] = pwelch(PArray(Samps,9),[],[],[],10000,’onesided’);

[A2S1Pxx,f4] = pwelch(PArray(Samps,10),[],[],[],10000,’onesided’);

[A2S2Pxx,f5] = pwelch(PArray(Samps,11),[],[],[],10000,’onesided’);

[A2S3Pxx,f6] = pwelch(PArray(Samps,12),[],[],[],10000,’onesided’);

[A3S1Pxx,f7] = pwelch(PArray(Samps,1),[],[],[],10000,’onesided’);

[A3S2Pxx,f8] = pwelch(PArray(Samps,2),[],[],[],10000,’onesided’);

[A3S3Pxx,f9] = pwelch(PArray(Samps,3),[],[],[],10000,’onesided’);

[A4S1Pxx,f10] = pwelch(PArray(Samps,4),[],[],[],10000,’onesided’);

[A4S2Pxx,f11] = pwelch(PArray(Samps,5),[],[],[],10000,’onesided’);

[A4S3Pxx,f12] = pwelch(PArray(Samps,6),[],[],[],10000,’onesided’);

[A5S2Pxx,f14] = pwelch(PArray(Samps,13),[],[],[],10000,’onesided’);

[A5S3Pxx,f15] = pwelch(PArray(Samps,14),[],[],[],10000,’onesided’);

% Calculate the RMS at each k and each transducer

A1S1RMS = sqrt((A1S1Pxx’*A1S1Pxx)/numel(A1S1Pxx));

A1S2RMS = sqrt((A1S2Pxx’*A1S2Pxx)/numel(A1S2Pxx));

A1S3RMS = sqrt((A1S3Pxx’*A1S3Pxx)/numel(A1S3Pxx));

A2S1RMS = sqrt((A2S1Pxx’*A2S1Pxx)/numel(A2S1Pxx));

A2S2RMS = sqrt((A2S2Pxx’*A2S2Pxx)/numel(A2S2Pxx));

A2S3RMS = sqrt((A2S3Pxx’*A2S3Pxx)/numel(A2S3Pxx));

A3S1RMS = sqrt((A3S1Pxx’*A3S1Pxx)/numel(A3S1Pxx));

A3S2RMS = sqrt((A3S2Pxx’*A3S2Pxx)/numel(A3S2Pxx));

A3S3RMS = sqrt((A3S3Pxx’*A3S3Pxx)/numel(A3S3Pxx));

A4S1RMS = sqrt((A4S1Pxx’*A4S1Pxx)/numel(A4S1Pxx));

A4S2RMS = sqrt((A4S2Pxx’*A4S2Pxx)/numel(A4S2Pxx));

A4S3RMS = sqrt((A4S3Pxx’*A4S3Pxx)/numel(A4S3Pxx));

181



A5S2RMS = sqrt((A5S2Pxx’*A5S2Pxx)/numel(A5S2Pxx));

A5S3RMS = sqrt((A5S3Pxx’*A5S3Pxx)/numel(A5S3Pxx));

% Place the RMS values in an array

RMSVector(ii,:) = [A3S1RMS A3S2RMS A3S3RMS...

A4S1RMS A4S2RMS A4S3RMS A1S1RMS A1S2RMS A1S3RMS...

A2S1RMS A2S2RMS A2S3RMS A5S2RMS A5S3RMS];

Calculate the LE locationfrom the RMS array. Determine the transducers up-

stream to shock

UpStreamTrans = find(RMSVector(ii,:) < 0.1);

% Determine the transducers downstream to shock

DownStreamTrans = find(RMSVector(ii,:) >= 0.1);

Linear interpolate to find the shock train location.

Use linear interp to find the shock train using the following

criteria:

1) if DownStream is empty -> No Shock -> xs_PSD =0

2) if UpStream is empty -> Unstart -> xs_PSD = 24

3) else interpolate

if isempty(DownStreamTrans)

xs_PSD25(ii-iiStart+1,1) = 24;

xs_PSD50(ii-iiStart+1,1) = 24;

xs_PSD75(ii-iiStart+1,1) = 24;

elseif isempty(UpStreamTrans)

xs_PSD25(ii-iiStart+1,1) = 0;

xs_PSD50(ii-iiStart+1,1) = 0;
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xs_PSD75(ii-iiStart+1,1) = 0;

else

% Calculate the x values and the RMS values on either side of the

% shock train LE

x_up = LocArray(max(UpStreamTrans));

x_down = LocArray(min(DownStreamTrans));

RMS_up = RMSVector(ii-iiStart+1,max(UpStreamTrans));

RMS_down = RMSVector(min(DownStreamTrans));

% Find the interpolation value to find

UpRMSAve = mean(RMSVector(ii-iiStart+1,UpStreamTrans));

% Assume it is at the 25%, 50%, and 75% RMS increases

xs_PSD_RMS_25 = UpRMSAve + 0.25*(max(RMSVector(ii,DownStreamTrans))-...

UpRMSAve);

xs_PSD_RMS_50 = UpRMSAve + 0.5*(max(RMSVector(ii,DownStreamTrans))-...

UpRMSAve);

xs_PSD_RMS_75 = UpRMSAve + 0.75*(max(RMSVector(ii,DownStreamTrans))-...

UpRMSAve);

% Record estimated location and go to ii = ii+1

% Interpolate for the shock train leading edge location

xPSD.PSD25(ii,1) = interp1(RMSVector(ii,:), LocArray, xs_PSD_RMS_25);

xPSD.PSD50(ii,1) = interp1(RMSVector(ii,:), LocArray, xs_PSD_RMS_50);

xPSD.PSD75(ii,1) = interp1(RMSVector(ii,:), LocArray, xs_PSD_RMS_75);

end

end
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H.5 Static Pressure Summation Method

function [xSum] = PressSumMethod(PressArray)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Maj John R Hutzel

% AFIT PhD Candidate

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code accepts the following input:

% PressArray - a (k x 14) table of the pressure measurements for each k

% and each of the 14 transducers. The first transducer is the most

% upstream and the 14th transducer is the BP transducer.

% This code returns the following output:

% xSum - a (k x 1) vector of the calculated shock train LE locations using

% the summation correlation method.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

First, input the correlation.

Theta = [-3.47e-5 1.39e-2 -1.96 104.08]’;

Calculate the sum at each k.

PSum = sum(PressArray,2);

Place the PSum array in a matrix and multiply by the Theta.

xSum = [PSum.^3 PSum.^2 PSum.^1 PSum.^0]*Theta;
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H.6 Back Pressure Method

function [xBP] = BPMethod(PressArray)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Maj John R Hutzel

% AFIT PhD Candidate

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code accepts the following input:

% PressArray - a (k x 14) table of the pressure measurements for each k

% and each of the 14 transducers. The first transducer is the most

% upstream and the 14th transducer is the BP transducer.

% This code returns the following output:

% xBP - a (k x 1) vector of the calculated shock train LE locations using

% the back pressure correlation method.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

First, input the correlation.

Theta = [-2.16 45.14 -218.53]’;

Grab the back pressure vector.

BP = PressArray(:,14);

Place in a matrix and multiply.

xBP = [BP.^2 BP BP.^0]*Theta;
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H.7 ARX Model Maker

% clc; beep off;

function [theta, xs2, e, RMS, N, X, bias] = ARXMaker(na, nb, xs1, xs2, u1, u2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Maj John R Hutzel

% AFIT PhD Candidate

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This function is used to develop the ARX models and run a simulation

% This function accepts the number of desired a’s and b’s along with a

% time-based vector of inputs and outputs and finds the regressor vector,

% theta, using least squares

x1 = xs1.Press;

x2 = xs2.Press;

% find out which is bigger, na or nb

n = [na nb];

[val, ind] = max(n);

% Now, create the X matrix

NumSamps1 = numel(u1);

NumSamps2 = numel(u2);

NumCol = nb+na;

NumRow1 = NumSamps1-val;

NumRow2 = NumSamps2-val;

X1 = zeros(NumRow1, NumCol);

X2 = zeros(NumRow2, NumCol);
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bcol = 0; acol = 0;

for ii = 1:NumCol

if na>nb

if ii <= na

X1(:,ii) = x1(na-acol:NumSamps1-(acol+1),1);

X2(:,ii) = x2(na-acol:NumSamps2-(acol+1),1);

acol = acol + 1;

else

X1(:,ii) = u1(nb-bcol+(na-nb):NumSamps1-(bcol+1),1);

X2(:,ii) = u2(nb-bcol+(na-nb):NumSamps2-(bcol+1),1);

bcol = bcol + 1;

end

else

if ii <= na

X1(:,ii) = x1(na-acol+(nb-na):NumSamps1-(acol+1),1);

X2(:,ii) = x2(na-acol+(nb-na):NumSamps2-(acol+1),1);

acol = acol + 1;

else

X1(:,ii) = u1(nb-bcol:NumSamps1-(bcol+1),1);

X2(:,ii) = u2(nb-bcol:NumSamps2-(bcol+1),1);

bcol = bcol + 1;

end

end

end

X = X1;

% % Calculate the condition number

% H = X’*X
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% Lambdas = eig(H)

% Condition = max(Lambdas)/min(Lambdas)

% Now, create the theta vector

x1_LS = x1(val+1:NumSamps1,1);

theta = X1\x1_LS;

% Check the fits

% Non-simulation fit:

xs2.ARXOneStep = X2*theta;

NumARX = numel(xs2.ARXOneStep);

% num = theta(1:na);

% den = [1 -1*theta(nb+1:nb+na)’];

num = theta(na+1:nb+na)’;

den = [1 -1*theta(1:na)’];

dsys = filt(num,den);

[z1,p1,k1] = zpkdata(dsys);

z2=cell2mat(z1);

p2=cell2mat(p1);

k1;

num./k1;

acol = 0; bcol = 0;

for ii = 1:NumCol

if ii <= na

xarray(1,ii) = x2(na-acol,1);

acol = acol + 1;

else

xarray(1,ii) = u2(nb-bcol,1);

bcol = bcol + 1;
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end

end

acol = 0; bcol = 0;

xout = x2(1:val);

for ii = (val+1):numel(x2)-(val+1)

xout(ii,1) = xarray*theta;

eout(ii,1) = x2(ii-1)-xout(ii);

for jj = 1:NumCol

if jj <= na

xarray(1,jj) = xout(ii-acol,1);

acol = acol + 1;

else

xarray(1,jj) = u2(ii-bcol,1);

bcol = bcol + 1;

end

end

acol = 0; bcol = 0;

end

bias = mean(eout)

xs2.ARXSim = [x2(1:val+1); xout];

eSim = x2-xs2.ARXSim;

RMS = sqrt((eSim’*eSim)/NumSamps2);

N2Sim = norm(eSim,2);

NInfSim = norm(eSim,inf);

N = [N2Sim NInfSim];

e.Sim = eSim;
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H.8 NARX Model Maker

% clc; beep off;

function [xs2, Pbp, eout] = NARXMaker(xs1, xs2, Pbp1, Pbp2, Ramp1, Ramp2, DV)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Maj John R Hutzel

% AFIT PhD Candidate

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This function is used to develop the NARX models and run a simulation

% This function accepts the number of desired a’s and b’s along with a

% time-based vector of inputs and outputs and finds the regressor vector,

% theta, using least squares

% Relabel the x vector

x1 = decimate(xs1.Press,DV);

x2 = decimate(xs2.Press,DV);

u1 = decimate(Pbp1,DV);

u2 = decimate(Pbp2,DV);

r1 = decimate(Ramp1,DV);

r2 = decimate(Ramp2,DV);

NS1 = numel(x1);

NS2 = numel(x2);

% Some initial conditions

pout(1) = u1(1);

pout(2) = u1(2);

pout(3) = u1(3);

pout(4) = u1(4);

xout(1) = x2(1);
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xout(2) = x2(2);

xout(3) = x2(3);

xout(4) = x2(4);

Pbp.NARX(1,:) = pout(1);

Pbp.NARX(2,:) = pout(2);

Pbp.NARX(3,:) = pout(3);

Pbp.NARX(3,:) = pout(3);

xs2.NARX(1,:) = xout(1);

xs2.NARX(2,:) = xout(2);

xs2.NARX(3,:) = xout(3);

xs2.NARX(4,:) = xout(4);

NTemp = length(x1(1:NS1-2));

% Try a poly NARX from P_BP and ramp to x_LE

xk = x1(2:NS1-1); xkm1 = x1(1:NS1-2);

uk = u1(2:NS1-1); ukm1 = u1(1:NS1-2);

X2 = [xk xkm1 uk uk.^2 ukm1];

theta2 = inv(X2’*X2)*X2’*x1(3:NS1,:)

% Simulate the response

% parray = [r2(2) r2(1)^2 u2(2)];

% x(k) = x2(2) x(k-1) = x2(1)

% u(k) = u2(2) u(k-1) = u2(1)

xarray = [xk(2) xk(1) u2(2) u2(2)^2 u2(1)];

for ii = 3:NS2

% pout(ii) = parray*theta1;

xout(ii) = xarray*theta2;

eout(ii) = xout(ii)-x2(ii-1);

% Pbp.NARX(ii,:) = pout(ii);
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xs2.NARX(ii,:) = xout(ii);

% parray = [r2(ii) r2(ii-1)^2 Pbp.NARX(ii)];

xarray = [xs2.NARX(ii) xs2.NARX(ii-1) u2(ii) u2(ii)^2 u2(ii-1)];

end
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71. Söderström, T. and Stoica, P., System Identification, Prentice Hall, New York,
NY, 1989.

198



Vita

John Robert Hutzel was born in Sacramento, CA to LtCol Robert F. and Mrs

Peggy E. Hutzel. He graduated from Marcus High School in Flower Mound, TX and

received a ROTC scholarship to attend Texas A&M University. While at Texas A&M,

he was a member of the Corps of Cadets in Squadron 17. He graduated from Texas

A&M in 2000 with a degree in Mechanical Engineering. After graduation, he was

commissioned a Second Lieutenant in the United States Air Force and began work

at the B-2 System Program Office where he worked as a program manager/engineer.

In 2005 he transferred to the Air Force Institute of Technology where he was a dis-

tinguished graduate and earned dual Masters degrees in Systems Engineering and

Research and Development Management. After his Masters work, he was assigned to

the 72D Test and Evaluation Squadron at Whiteman AFB, MO where he worked as

a test engineer. John was accepted to the Aeronautical Engineering PhD program at

AFIT in 2008. In addition to his engineering research, he started distance running

while at AFIT and completed three half marathons and one full marathon while a

student.

Permanent address: 2950 Hobson Way
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

199



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

15–12–2011 Doctoral Dissertation Sep 2008 — Oct 2011

Scramjet Isolator Modeling and Control

10-247

Hutzel, John R., Maj, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/DS/ENY/11-19

AFRL/RZAS–Bldg 18
Attn: Jeffrey M. Donbar
1950 Fifth Street
WPAFB, OH 45433
(937)255-1996 Jeffrey.Donbar@wpafb.af.mil

AFRL/RZAS

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States

The scramjet isolator is a duct in which pressure increases from the inlet to the combustor via a shock
train. The shock train leading edge (LE) location must be controlled in an operational scramjet. A LE location
measurement algorithm, dynamic model, and control algorithm were developed and validated with 500 frame per second
(FPS) shadowgraph images in this research. The test apparatus consisted of a direct connect cold-flow high-speed wind
tunnel with an adjustable ramp mounted in the tunnel floor. Ramp adjustments changed the tunnel cross-sectional area
which changed the tunnel back pressure and LE location. Wall-mounted pressure transducers and a high-speed camera
were used for data collection. The LE location measurement algorithm is the first with results validated using 500 FPS
shadowgraph images to measure the LE location with root mean square (RMS) errors less than 20% of a duct height, D,
although the transducers were separated by 50% of D. The developed and validated dynamic model is the first with
error RMS values less than 24% of D. Finally, the first control algorithm capable of controlling the LE location within
50% of D was developed and validated.

System Identification, Control, Modeling, Scramjet, Isolator, Hammerstein model

U U U UU 224

Dr. Douglas D. Decker

(937)522-6870; Douglas.Decker.ctr@wpafb.af.mil


